cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294166 Row sums of A291843.

Original entry on oeis.org

1, 0, 1, 8, 71, 789, 10365, 157031, 2692497, 51519756, 1088093185, 25140587651, 630820490833, 17082650998878, 496596665961713, 15425333714935513, 509890407550644949, 17871584701588777344, 662057571007292023593, 25847670560115633381442
Offset: 0

Views

Author

Gheorghe Coserea, Nov 05 2017

Keywords

Crossrefs

Cf. A291843.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    Vec(A291843_ser(20,1))

Formula

G.f. y(x) satisfies: 0 = 2*x^2*(1+x)*y*deriv(y,x) + x*y^2 - (1+x)^2*(1-2*x)*y + (1+x)*(1-2*x).