A294172 Maximum value of the cyclic convolution of the first n positive integers with themselves.
1, 5, 13, 28, 50, 83, 126, 184, 255, 345, 451, 580, 728, 903, 1100, 1328, 1581, 1869, 2185, 2540, 2926, 3355, 3818, 4328, 4875, 5473, 6111, 6804, 7540, 8335, 9176, 10080, 11033, 12053, 13125, 14268, 15466, 16739, 18070, 19480, 20951, 22505, 24123, 25828, 27600
Offset: 1
Keywords
Examples
For n = 4, the four possible cyclic convolutions of the first four positive integers with themselves are: (1,2,3,4).(4,3,2,1) = 1*4 + 2*3 + 3*2 + 4*1 = 4 + 6 + 6 + 4 = 20, (1,2,3,4).(3,2,1,4) = 1*3 + 2*2 + 3*1 + 4*4 = 3 + 4 + 3 + 16 = 26, (1,2,3,4).(2,1,4,3) = 1*2 + 2*1 + 3*4 + 4*3 = 2 + 2 + 12 + 12 = 28, (1,2,3,4).(1,4,3,2) = 1*1 + 2*4 + 3*3 + 4*2 = 1 + 8 + 9 + 8 = 26, then a(4)=28 because 28 is the maximum among the four values.
Links
- Sela Fried, On the maximum value of the cyclic convolution of the first n positive integers with themselves (A294172), 2024.
- Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024. See p. 8.
Programs
-
Mathematica
a[n_] := Max[Table[Range[n].RotateRight[Reverse[Range[n]], k], {k, 0, n - 1}]]; Table[a[n], {n, 1, 45}]
-
PARI
a(n) = vecmax(vector(n, k, sum(i=1, n, (n-i+1)*(1+(i+k) % n)))); \\ Michel Marcus, Feb 11 2018
Formula
a(n) = Max {x; x=Sum_{i=1..n}(n-i+1)*(1+(i+k) mod n); for k=1..n}.
Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: x*(1 + 3*x + 2*x^2 + x^3) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
(End)
Comments