A294181 Coefficients in expansion of E_2/E_4.
1, -264, 61128, -14107296, 3255470952, -751247454384, 173361309784992, -40005651284526912, 9231887649122522280, -2130392752758423726312, 491619206548389935051568, -113448303808924351510423008, 26179851123971817380111236128
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..422
Crossrefs
Programs
-
Mathematica
terms = 13; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E2[x]/E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
Formula
Convolution inverse of A288877.
a(n) ~ (-1)^n * 1024 * Pi^11 * exp(Pi*sqrt(3)*n) / (3^(3/2) * Gamma(1/3)^18). - Vaclav Kotesovec, Jun 03 2018