A294187 Numbers k == 77 (mod 120) such that (2*k-1)*2^((k-1)/2), (2*k-1)*3^((k-1)/2) and (2*k-1)*5^((k-1)/2) are congruent to 1 (mod k).
197, 317, 557, 677, 797, 1277, 1637, 1877, 1997, 2237, 2357, 2477, 2837, 2957, 3557, 3677, 3797, 3917, 4157, 4397, 4517, 4637, 4877, 5237, 5477, 5717, 6197, 6317, 6917, 7517, 7757, 7877, 8117, 8237, 8597, 8837, 9437, 9677, 10037
Offset: 1
Keywords
Links
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016.
Crossrefs
Cf. A001567.
Programs
-
GAP
Filtered([1..11000],k->k mod 120 = 77 and (2*k-1)*2^((k-1)/2) mod k = 1 and (2*k-1)*3^((k-1)/2) mod k = 1 and (2*k-1)*5^((k-1)/2) mod k = 1); # Muniru A Asiru, Mar 11 2018
-
Maple
a:=k->`if`(k mod 120 = 77 and (2*k-1)*2^((k-1)/2) mod k = 1 and (2*k-1)*3^((k-1)/2) mod k = 1 and (2*k-1)*5^((k-1)/2) mod k = 1,k,NULL): seq(a(k),k=1..50); # Muniru A Asiru, Mar 11 2018
-
Mathematica
k = 77; lst = {}; While[k < 12000, If[Mod[(2k -1) PowerMod[{2, 3, 5}, (k -1)/2, k], k] == {1, 1, 1}, AppendTo[lst, k]]; k += 120]; lst (* Robert G. Wilson v, Feb 13 2018 *)
-
PARI
is(n) = n%120==77 &&(2*n-1)* Mod(2, n)^((n-1)\2)==1 &&(2*n-1)* Mod(3, n)^((n-1)\2)==1 &&(2*n-1)* Mod(5, n)^((n-1)\2)==1 \\
Comments