A294207 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,k), 0 <= 3k <= 2n, that are below the line 3y=2x, only touching at the end points.
1, 1, 1, 1, 1, 2, 2, 1, 3, 3, 1, 4, 7, 7, 1, 5, 12, 19, 19, 1, 6, 18, 37, 37, 1, 7, 25, 62, 99, 99, 1, 8, 33, 95, 194, 293, 293, 1, 9, 42, 137, 331, 624, 624, 1, 10, 52, 189, 520, 1144, 1768, 1768, 1, 11, 63, 252, 772, 1916, 3684, 5452, 5452
Offset: 0
Examples
The table begins: n=0: 1; n=1: 1; n=2: 1, 1; n=3: 1, 2, 2; n=4: 1, 3, 3; n=5: 1, 4, 7, 7; n=6: 1, 5, 12, 19, 19; n=7: 1, 6, 18, 37, 37; n=8: 1, 7, 25, 62, 99, 99; n=9: 1, 8, 33, 95, 194, 293, 293.
Links
- Eric Weisstein's World of Mathematics, Lattice Path.
Programs
-
Mathematica
T[, 0] = 1; T[n, k_] := T[n, k] = Which[0 < k < 2(n-1)/3, T[n-1, k] + T[n, k-1], 2(n-1) <= 3k <= 2n, T[n, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[2n/3]}] // Flatten (* Jean-François Alcover, Jul 10 2018 *)
-
Sage
T = [[1]] for n in range(1,15): T.append([T[-1][0]]) for k in range(1,floor(2*n/3) + 1): T[-1].append(T[-1][k-1]) if 2*(n-1)>3*k: T[-1][-1] += T[-2][k]
Formula
T(n,0) = 1; for 0 < k < 2(n-1)/3, T(n,k) = T(n-1,k) + T(n,k-1); for 2(n-1) <= 3k <= 2n, T(n,k) = T(n,k-1).