A294219 Number T(n,k) of ascent sequences of length n where the maximum of 0 and all letter multiplicities equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 4, 1, 0, 1, 26, 20, 5, 1, 0, 1, 82, 97, 30, 6, 1, 0, 1, 276, 496, 191, 42, 7, 1, 0, 1, 1014, 2686, 1259, 310, 56, 8, 1, 0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1, 0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1
Offset: 0
Examples
T(4,1) = 1: 0123. T(4,2) = 9: 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122. T(4,3) = 4: 0001, 0010, 0100, 0111. T(4,4) = 1: 0000. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 9, 4, 1; 0, 1, 26, 20, 5, 1; 0, 1, 82, 97, 30, 6, 1; 0, 1, 276, 496, 191, 42, 7, 1; 0, 1, 1014, 2686, 1259, 310, 56, 8, 1; 0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1; 0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1; ...
Programs
-
Maple
b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1, add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+ `if`(j>i, 1, 0), p+x^j, k)), j=1..t+1)) end: A:= (n, k)-> b(n, 0$3, k): T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[If[ Coefficient[p, x, j] == k, 0, b[n - 1, j, t + If[j > i, 1, 0], p + x^j, k]], {j, t + 1}]]; A[n_, k_] := b[n, 0, 0, 0, k]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)