A294226 Length of period of continued fraction expansion of sqrt(3*2^n).
2, 2, 2, 2, 2, 4, 4, 8, 8, 12, 16, 32, 36, 60, 72, 128, 136, 244, 292, 508, 576, 972, 1120, 1992, 2272, 3948, 4588, 7924, 9056, 15764, 18132, 31832, 36444, 63216, 72808, 126456, 145332, 253112, 290968, 507096, 581952, 1012312, 1163452, 2026504, 2327844, 4051424, 4656388
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..80 (n = 0..46 from A.H.M. Smeets)
Programs
-
Mathematica
Array[Length@ Last@ ContinuedFraction@ Sqrt[3*2^#] &, 47, 0] (* Michael De Vlieger, Oct 25 2017 *)
-
Python
# for odd n m, p, q = 0, 6, 2 tl, nl, tb, nb = 3, 1, 2, 1 while nl < 10**100000000: tl = tl * nb + tb * nl nl = 2 * nl * nb nb = tl tb = p * nl tl = tl *nb + tb * nl nl = 2 * nl * nb tel, noe = tl, nl while m >= 0: tl = tel*q**m nl = noe a0 = tl//nl t = 0 an = a0 while an != 2*a0: tl = tl - an*nl tl, nl = nl, tl an = tl//nl t = t + 1 print(2*m+1, t) m = m+1
Comments