A294247 Sum of the parts in the partitions of n into exactly two distinct squarefree parts.
0, 0, 3, 4, 5, 6, 14, 24, 18, 10, 22, 36, 39, 28, 45, 80, 68, 72, 57, 100, 84, 88, 92, 168, 125, 104, 135, 168, 145, 120, 155, 256, 198, 204, 210, 396, 259, 228, 273, 440, 328, 294, 387, 528, 450, 322, 376, 624, 490, 400, 357, 676, 530, 540, 385, 728, 570
Offset: 1
Examples
For n = 4,5,6,7 the partitions are respectively 1+3 (sum a(4) = 4), 2+3 (sum 5), 1+5 (sum 6), 1+6 and 2+5 (sum 7+7=14). - _N. J. A. Sloane_, Oct 28 2017
Programs
-
Mathematica
Table[n*Sum[MoebiusMu[i]^2*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 80}]
-
Python
from sympy import mobius def a(n): return n*sum(mobius(i)**2*mobius(n - i)**2 for i in range(1, ((n - 1)//2) + 1)) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Nov 07 2017
-
R
require(numbers) a <- function(n) { if (n<3) return(0) S <- numeric() for (i in 1:floor((n-1)/2)) S <- c(S, moebius(i)^2*moebius(n-i)^2) return(n*sum(S)) } sapply(1:100, a) # Indranil Ghosh, Nov 07 2017
Formula
a(n) = n * Sum_{i=1..floor((n-1)/2)} mu(i)^2 * mu(n-i)^2, where mu(n) is the Möbius function (A008683).
Comments