cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294247 Sum of the parts in the partitions of n into exactly two distinct squarefree parts.

Original entry on oeis.org

0, 0, 3, 4, 5, 6, 14, 24, 18, 10, 22, 36, 39, 28, 45, 80, 68, 72, 57, 100, 84, 88, 92, 168, 125, 104, 135, 168, 145, 120, 155, 256, 198, 204, 210, 396, 259, 228, 273, 440, 328, 294, 387, 528, 450, 322, 376, 624, 490, 400, 357, 676, 530, 540, 385, 728, 570
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 25 2017; recomputed Oct 26 2017 with thanks to Andrey Zabolotskiy

Keywords

Comments

Sum of the semiperimeters of the distinct rectangles with squarefree length and width such that L + W = n, W < L.

Examples

			For n = 4,5,6,7 the partitions are respectively 1+3 (sum a(4) = 4), 2+3 (sum 5), 1+5 (sum 6), 1+6 and 2+5 (sum 7+7=14). - _N. J. A. Sloane_, Oct 28 2017
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[MoebiusMu[i]^2*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 80}]
  • Python
    from sympy import mobius
    def a(n): return n*sum(mobius(i)**2*mobius(n - i)**2 for i in range(1, ((n - 1)//2) + 1))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Nov 07 2017
    
  • R
    require(numbers)
    a <- function(n) {
      if (n<3) return(0)
      S <- numeric()
      for (i in 1:floor((n-1)/2)) S <- c(S, moebius(i)^2*moebius(n-i)^2)
      return(n*sum(S))
    }
    sapply(1:100, a) # Indranil Ghosh, Nov 07 2017

Formula

a(n) = n * Sum_{i=1..floor((n-1)/2)} mu(i)^2 * mu(n-i)^2, where mu(n) is the Möbius function (A008683).