A294266 Number of partitions of n into distinct squares that do not divide n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 1, 3, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 1, 0, 0, 2, 3, 0, 0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 2, 0, 0, 3, 4
Offset: 0
Examples
a(29) = 2 because we have [25, 4] and [16, 9, 4].
Links
Programs
-
Maple
f:= proc(n) local P,k,x; P:= 1; for k from 2 to floor(sqrt(n)) do if n mod k^2 = 0 then next fi; P:= series(P*(1+x^(k^2)),x,n+1); od; coeff(P,x,n) end proc: map(f, [$0..200]); # Robert Israel, Apr 15 2024
-
Mathematica
Table[SeriesCoefficient[Product[1 + Boole[Mod[n, k] > 0 && OddQ[DivisorSigma[0, k]]] x^k, {k, 1, n}], {x, 0, n}], {n, 0, 110}]