cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294273 Sum of the sixth powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 65, 858, 4890, 21244, 67171, 188916, 446964, 994030, 1978405, 3796622, 6735950, 11680408, 19092295, 30745064, 47260136, 71929146, 105409929, 153455810, 216455810, 303993492, 415601835, 566623708, 754740700, 1003708134, 1307797101, 1702747126
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), this sequence (k=6), A294274 (k=7), A294275 (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [(n/42 - n^3/6 + n^5/2 + 1/128*(-63 + (-1)^n)*n^6 + n^7/7) : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
  • Mathematica
    Table[Sum[i^6 + (n - i)^6, {i, Floor[n/2]}], {n, 50}]
  • PARI
    concat(0, Vec(x^2*(2 + 63*x + 779*x^2 + 3591*x^3 + 10845*x^4 + 19026*x^5 + 23850*x^6 + 19026*x^7 + 10600*x^8 + 3591*x^9 + 723*x^10 + 63*x^11 + x^12) / ((1 - x)^8*(1 + x)^7) + O(x^40))) \\ Colin Barker, Nov 20 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^6 + (n-i)^6.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 63*x + 779*x^2 + 3591*x^3 + 10845*x^4 + 19026*x^5 + 23850*x^6 + 19026*x^7 + 10600*x^8 + 3591*x^9 + 723*x^10 + 63*x^11 + x^12) / ((1 - x)^8*(1 + x)^7).
a(n) = (n/42 - n^3/6 + n^5/2 + 1/128*(-63 + (-1)^n)*n^6 + n^7/7).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - 21*a(n-4) + 21*a(n-5) + 35*a(n-6) - 35*a(n-7) - 35*a(n-8) + 35*a(n-9) + 21*a(n-10) - 21*a(n-11) - 7*a(n-12) + 7*a(n-13) + a(n-14) - a(n-15) for n>15.
(End)