cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294276 Sum of the ninth powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 513, 20708, 282340, 2255148, 12313161, 52928912, 186884496, 576258110, 1574304985, 3942330372, 9092033028, 19736886008, 40357579185, 78935156288, 147520415296, 266495712282, 464467582161, 788155279940, 1299155279940, 2095793274212, 3300704544313
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), this sequence (k=9), A294279 (k=10).

Programs

  • Magma
    [-n^2*(768-2560*n^2+3584*n^4-3840*n^6+2555*n^7-512*n^8-5*n^7*(-1)^n)/5120 : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
  • Mathematica
    Table[Sum[i^9 + (n - i)^9, {i, Floor[n/2]}], {n, 40}]
  • PARI
    concat(0, Vec(x^2*(2 + 511*x + 20175*x^2 + 256522*x^3 + 1770948*x^4 + 7464688*x^5 + 21796206*x^6 + 45087574*x^7 + 69569484*x^8 + 79813090*x^9 + 69501528*x^10 + 45087574*x^11 + 21722580*x^12 + 7464688*x^13 + 1756842*x^14 + 256522*x^15 + 19674*x^16 + 511*x^17+ x^18) / ((1 - x)^11*(1 + x)^10) + O(x^40))) \\ Colin Barker, Nov 21 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^9 + (n-i)^9.
From Colin Barker, Nov 21 2017: (Start)
G.f.: x^2*(2 + 511*x + 20175*x^2 + 256522*x^3 + 1770948*x^4 + 7464688*x^5 + 21796206*x^6 + 45087574*x^7 + 69569484*x^8 + 79813090*x^9 + 69501528*x^10 + 45087574*x^11 + 21722580*x^12 + 7464688*x^13 + 1756842*x^14 + 256522*x^15 + 19674*x^16 + 511*x^17+ x^18) / ((1 - x)^11*(1 + x)^10).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - 45*a(n-4) + 45*a(n-5) + 120*a(n-6) - 120*a(n-7) - 210*a(n-8) + 210*a(n-9) + 252*a(n-10) - 252*a(n-11) - 210*a(n-12) + 210*a(n-13) + 120*a(n-14) - 120*a(n-15) - 45*a(n-16) + 45*a(n-17) + 10*a(n-18) - 10*a(n-19) - a(n-20) + a(n-21) for n>21.
(End)
a(n) = -n^2*(768-2560*n^2+3584*n^4-3840*n^6+2555*n^7-512*n^8-5*n^7*(-1)^n)/5120. - Wesley Ivan Hurt, Jul 12 2025