cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294288 Sum of the fourth powers of the parts in the partitions of n into two distinct parts.

Original entry on oeis.org

0, 0, 17, 82, 354, 898, 2275, 4420, 8772, 14708, 25333, 38678, 60710, 86870, 127687, 174216, 243848, 320808, 432345, 552666, 722666, 902506, 1151403, 1410508, 1763020, 2125084, 2610621, 3103646, 3756718, 4413374, 5273999, 6131984, 7246096, 8348496, 9768353
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Programs

  • Mathematica
    Table[Sum[i^4 + (n - i)^4, {i, Floor[(n-1)/2]}], {n, 40}]
    Rest@ CoefficientList[ Series[ x^3*(17 +65x +187x^2 +219x^3 +187x^4 +75x^5 +17x^6 +x^7)/((1 -x)^6*(1 +x)^5), {x, 0, 35}], x] (* or *)
    LinearRecurrence[{1, 5, -5, -10, 10, 10, -10, -5, 5, 1, -1}, {0, 0, 17, 82, 354, 898, 2275, 4420, 8772, 14708, 25333}, 35] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    concat(vector(2), Vec(x^3*(17 + 65*x + 187*x^2 + 219*x^3 + 187*x^4 + 75*x^5 + 17*x^6 + x^7) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Nov 20 2017

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i^4 + (n-i)^4.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^3*(17 + 65*x + 187*x^2 + 219*x^3 + 187*x^4 + 75*x^5 + 17*x^6 + x^7) / ((1 - x)^6*(1 + x)^5).
a(n) = (1/480)*(n*(-16 + 160*n^2 - 15*(17 + (-1)^n)*n^3 + 96*n^4)).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>11.
(End)