A294288 Sum of the fourth powers of the parts in the partitions of n into two distinct parts.
0, 0, 17, 82, 354, 898, 2275, 4420, 8772, 14708, 25333, 38678, 60710, 86870, 127687, 174216, 243848, 320808, 432345, 552666, 722666, 902506, 1151403, 1410508, 1763020, 2125084, 2610621, 3103646, 3756718, 4413374, 5273999, 6131984, 7246096, 8348496, 9768353
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
Programs
-
Mathematica
Table[Sum[i^4 + (n - i)^4, {i, Floor[(n-1)/2]}], {n, 40}] Rest@ CoefficientList[ Series[ x^3*(17 +65x +187x^2 +219x^3 +187x^4 +75x^5 +17x^6 +x^7)/((1 -x)^6*(1 +x)^5), {x, 0, 35}], x] (* or *) LinearRecurrence[{1, 5, -5, -10, 10, 10, -10, -5, 5, 1, -1}, {0, 0, 17, 82, 354, 898, 2275, 4420, 8772, 14708, 25333}, 35] (* Robert G. Wilson v, Jan 07 2018 *)
-
PARI
concat(vector(2), Vec(x^3*(17 + 65*x + 187*x^2 + 219*x^3 + 187*x^4 + 75*x^5 + 17*x^6 + x^7) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Nov 20 2017
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} i^4 + (n-i)^4.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^3*(17 + 65*x + 187*x^2 + 219*x^3 + 187*x^4 + 75*x^5 + 17*x^6 + x^7) / ((1 - x)^6*(1 + x)^5).
a(n) = (1/480)*(n*(-16 + 160*n^2 - 15*(17 + (-1)^n)*n^3 + 96*n^4)).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>11.
(End)