cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294315 a(n) = 3*n^3 + n^2.

Original entry on oeis.org

0, 4, 28, 90, 208, 400, 684, 1078, 1600, 2268, 3100, 4114, 5328, 6760, 8428, 10350, 12544, 15028, 17820, 20938, 24400, 28224, 32428, 37030, 42048, 47500, 53404, 59778, 66640, 74008, 81900, 90334, 99328, 108900, 119068, 129850, 141264, 153328, 166060, 179478
Offset: 0

Views

Author

Jason Morgan, Oct 28 2017

Keywords

Comments

All terms are even.

Examples

			a(3)=90 because 3*3^3 + 3^2 = 3*27 + 9 = 90.
		

Crossrefs

Programs

  • GAP
    A294315:=List([0..10^4],n -> 3 *n^3 + n^2 ); # Muniru A Asiru, Dec 11 2017
  • Mathematica
    Array[3 #^3 + #^2 &, 40, 0] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 4, 28, 90}, 40] (* or *)
    CoefficientList[Series[2 x (2 + 6 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* Michael De Vlieger, Dec 12 2017 *)
  • PARI
    a(n) = 3*n^3 + n^2;
    
  • PARI
    concat(0, Vec(2*x*(2 + 6*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 11 2017
    

Formula

a(n) = 3*n^3 + n^2.
a(n) = A117642(n) + A000290(n).
a(n) = 2*A036659(n).
From Colin Barker, Dec 11 2017: (Start)
G.f.: 2*x*(2 + 6*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + sqrt(3)*Pi/2 + 9*log(3)/2 - 9.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - sqrt(3)*Pi - 6*log(2) + 9. (End)