A294326 a(n) = Product_{k=0..n} (5*k + 4)!.
24, 8709120, 759246199455744000, 92358580167818066670290731008000000, 57303733451473984666829812178837795780510487674880000000000
Offset: 0
Keywords
Programs
-
Mathematica
Table[Product[(5*k + 4)!, {k, 0, n}] , {n, 0, 10}] FoldList[Times,(5*Range[0,5]+4)!] (* Harvey P. Dale, Sep 27 2018 *)
Formula
a(n) ~ 2^(n/2 + 1/5) * 5^(5*n^2/2 + 7*n + 29/6) * n^(5*n^2/2 + 7*n + 281/60) * Pi^(n/2 + 1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) / (A^(1/5) * (1 + sqrt(5))^(1/10) * exp(15*n^2/4 + 7*n-1/60)), where A is the Glaisher-Kinkelin constant A074962.