cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294330 E.g.f. A(x) satisfies: Product_{n>=1} (1 - (-A(x))^n) = exp(x).

Original entry on oeis.org

1, 3, 19, 207, 3331, 71223, 1890379, 59652687, 2175761971, 89953773543, 4155502117339, 212122704251967, 11857607972675011, 720435277883199063, 47273215180877201899, 3331797538738820992047, 251025685429022007354451, 20133640365773761748643783, 1712740622904757368673592059
Offset: 1

Views

Author

Paul D. Hanna, Oct 28 2017

Keywords

Comments

Unsigned version of A180563.

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 19*x^3/3! + 207*x^4/4! + 3331*x^5/5! + 71223*x^6/6! + 1890379*x^7/7! + 59652687*x^8/8! + 2175761971*x^9/9! + 89953773543*x^10/10! +...
such that  A( log(Q(x)) ) = x, where:
Q(x) = Product_{n>=1} (1 - (-x)^n);
log(Q(x)) = x - 3*x^2/2 + 4*x^3/3 - 7*x^4/4 + 6*x^5/5 - 12*x^6/6 + 8*x^7/7 - 15*x^8/8 + 13*x^9/9 - 18*x^10/10 +...+ (-1)^(n-1)*sigma(n)*x^n/n +...
and Q(x) = 1 + x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 + x^35 - x^40 - x^51 - x^57 - x^70 + x^77 + x^92 + x^100 +...+ A121373(n)*x^n +...
Also,
exp(3*x) = 1 + 3*A(x) - 5*A(x)^3 - 7*A(x)^6 + 9*A(x)^10 + 11*A(x)^15 - 13*A(x)^21 - 15*A(x)^28 + 17*A(x)^36 +...+ (-1)^[n/2] * (2*n+1) * A(x)^(n*(n+1)/2) +...
ALTERNATE GENERATING FUNCTION.
L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 207*x^4/4 + 3331*x^5/5 + 71223*x^6/6 + 1890379*x^7/7 + 59652687*x^8/8 + 2175761971*x^9/9 + 89953773543*x^10/10 +...
such that
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 60*x^4 + 732*x^5 + 12672*x^6 + 283704*x^7 + 7757526*x^8 + 249885110*x^9 + 9255184676*x^10 +...+ A294331(n)*x^n +...
		

Crossrefs

Cf. A294331, A010815, A180563 (variant).

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) eq = FindRoot[{E^r == QPochhammer[-s], (E^r*(Log[1 + s] + QPolyGamma[0, 1, -s]))/(s*Log[-s]) + Derivative[0, 1][QPochhammer][-s, -s] == 0}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 400]; {N[1/r/E /. eq, 120], val = s*E^r*Sqrt[-r*(1 + s) * (Log[-s]^2/(E^(2*r)*(1 + s)*QPolyGamma[1, 1, -s] + s*Log[-s]*(-s*(1 + s) * Log[-s] * Derivative[0, 1][QPochhammer][-s, -s]^2 + E^r*(1 + s)*((-2 - Log[-s]) * Derivative[0, 1][QPochhammer][-s, -s] + s*Log[-s] * Derivative[0, 2][QPochhammer][-s, -s]) + 2*E^(2*r)*(-1 + (1 + s) * Derivative[0, 0, 1][QPolyGamma][0, 1, -s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n) = local( L = sum(m=1, n, (-1)^(m-1) * sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(L), n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies:
(1) Sum_{n>=1} (-1)^(n-1) * sigma(n) * A(x)^n / n = x.
(2) Sum_{n>=0} (-1)^[n/2] * (2*n+1) * A(x)^(n*(n+1)/2) = exp(3*x).
(3) A(x) = Series_Reversion( log(Q(x)) ) where Q(x) = Product_{n>=1} (1 - (-x)^n).
a(n) ~ c * d^n * n^(n-1), where d = 1.788680223969315995... and c = 0.254472375755339325... - Vaclav Kotesovec, Oct 29 2017

A294332 G.f.: exp( Sum_{n>=1} A180563(n) * x^n / n ).

Original entry on oeis.org

1, 1, -1, 5, -45, 609, -11141, 257281, -7170355, 233936995, -8744103079, 368479396171, -17288353555771, 894005702731735, -50527305282004435, 3099060459670425655, -205028564671300495120, 14554510561318327509610, -1103542106915790217739110, 89009707681627448130203830, -7610129271299704960998906454, 687495658528174987634449288846, -65438091790081511530153327883206, 6545685493719560524729653911676430
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2017

Keywords

Examples

			G.f.: A(x) = 1 + x - x^2 + 5*x^3 - 45*x^4 + 609*x^5 - 11141*x^6 + 257281*x^7 - 7170355*x^8 + 233936995*x^9 - 8744103079*x^10 +...
such that
log(A(x)) = x - 3*x^2/2 + 19*x^3/3 - 207*x^4/4 + 3331*x^5/5 - 71223*x^6/6 + 1890379*x^7/7 - 59652687*x^8/8 + 2175761971*x^9/9 +...+ A180563(n)*x^n/n +...
where the e.g.f. G(x) of A180563 begins
G(x) = x - 3*x^2/2! + 19*x^3/3! - 207*x^4/4! + 3331*x^5/5! - 71223*x^6/6! + 1890379*x^7/7! +...+ A180563(n)*x^n/n! +...
and satisfies: Product_{n>=1} (1 - G(x)^n) = exp(-x).
		

Crossrefs

Cf. A180653, A294331 (variant).

Programs

  • PARI
    {A180563(n) = my( L = sum(m=1, n, sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(L), n)}
    {a(n) = my(A); A = exp( sum(m=1, n+1, A180563(m)*x^m/m +x*O(x^n)) ); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
Showing 1-2 of 2 results.