A294334 Number of partitions of n into triangular numbers dividing n.
1, 1, 1, 2, 1, 1, 4, 1, 1, 4, 2, 1, 9, 1, 1, 7, 1, 1, 16, 1, 3, 9, 1, 1, 25, 1, 1, 10, 2, 1, 74, 1, 1, 12, 1, 1, 50, 1, 1, 14, 5, 1, 85, 1, 1, 35, 1, 1, 81, 1, 6, 18, 1, 1, 100, 2, 3, 20, 1, 1, 544, 1, 1, 46, 1, 1, 145, 1, 1, 24, 8, 1, 219, 1, 1, 81, 1, 1, 197, 1, 9, 28, 1, 1, 628, 1, 1, 30, 1, 1, 2264, 2, 1, 32, 1, 1
Offset: 0
Examples
a(6) = 4 because 6 has 4 divisors {1, 2, 3, 6} among which 3 are triangular numbers {1, 3, 6} therefore we have [6], [3, 3], [3, 1, 1, 1] and [1, 1, 1, 1, 1, 1].
Links
Programs
-
Mathematica
Table[SeriesCoefficient[Product[1/(1 - Boole[Mod[n, k] == 0 && IntegerQ[Sqrt[8 k + 1]]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 95}]
Formula
a(n) = 1 if n in A112886.