A294337 Number of ways to write 2^n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.
1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 7, 2, 4, 4, 10, 2, 7, 2, 7, 4, 4, 2, 10, 4, 4, 6, 7, 2, 8, 2, 12, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 7, 7, 4, 2, 15, 4, 7, 4, 7, 2, 10, 4, 10, 4, 4, 2, 13, 2, 4, 7, 16, 4, 8, 2, 7, 4, 8, 2, 16, 2, 4, 7, 7, 4, 8, 2, 15, 10, 4, 2, 13, 4, 4, 4, 10, 2, 13, 4, 7, 4, 4, 4, 18, 2, 7, 7, 12, 2, 8, 2, 10, 8
Offset: 1
Keywords
Examples
The a(12) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a[n_]:=1+Sum[a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]; Table[a[2^n],{n,100}]
-
PARI
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409 A294336(n) = if(1==n,n,sumdiv(A052409(n),d,A294336(d))); A294337(n) = sumdiv(n,d,A294336(d)); \\ Or alternatively, after Mathematica-code as: A294337(n) = A294336(2^n); \\ Antti Karttunen, Jun 12 2018
Formula
Extensions
More terms from Antti Karttunen, Jun 12 2018