A294338 Number of ways to write n as a finite power-tower of positive integers greater than one, allowing both left and right nesting of parentheses.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The a(16) = 5 ways are: 16, 4^2, (2^2)^2, 2^4, 2^(2^2).
Links
- R. J. Mathar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A294338 := proc(n) local expo,g,a,d ; if n =1 then return 1; end if; # compute gcd of the set of prime power exponents (A052409) ifactors(n)[2] ; [ seq(op(2,ep),ep=%)] ; igcd(op(%)) ; # set of divisors of A052409 (without the 1) g := numtheory[divisors](%) minus {1} ; a := 0 ; for d in g do # recursive (sort of convolution) call a := a+ procname(d)*procname(root[d](n)) ; end do: 1+a ; end proc: seq(A294338(n),n=1..120) ; # R. J. Mathar, Nov 27 2017
-
Mathematica
a[n_]:=1+Sum[a[n^(1/g)]*a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]; Array[a,100]