cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294352 Product of first n terms of the binomial transform of the factorial.

Original entry on oeis.org

1, 2, 10, 160, 10400, 3390400, 6635012800, 90899675360000, 9962695319131360000, 9827302289744364817600000, 96937502343569678741652977600000, 10518214548789290471667075399621491200000, 13695360582395151673134516587047571322777664000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*k!, {k, 0, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * exp(n+1) * BarnesG(n+2).
a(n) ~ c * n^(n^2/2 + n + 5/12) * (2*Pi)^(n/2 + 1/2) / (A * exp(3*n^2/4 - 13/12))
where c = 0.24314714161123874545254157058990661627416712475691705561000082745...
and A is the Glaisher-Kinkelin constant A074962.

A110140 Binomial transform of n^n (with interpolated zeros).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 103, 351, 1321, 5113, 21201, 90465, 406621, 1879021, 9051309, 44754061, 229059633, 1201271409, 6488957521, 35853950609, 203303964341, 1177299817093, 6976709899853, 42161309544541, 260154190137865
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Binomial transform of 1,0,1,0,4,0,27,....

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Binomial[n, k]*(k/2)^(k/2)*(1 + (-1)^k)/2, {k, 1, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 30 2017 *)

Formula

a(n)=sum{k=0..n, C(n, k)(k/2)^(k/2)*(1+(-1)^k)/2}
Showing 1-2 of 2 results.