cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229464 Binomial transform of (2*n + 1)!.

Original entry on oeis.org

1, 7, 133, 5419, 383785, 41782831, 6472067437, 1352114646163, 366325440650449, 124893891684358615, 52323557348796456661, 26420766706149889279867, 15824833185409769038803193, 11092546337733020334329204479, 8995627147680234199615065312445
Offset: 0

Views

Author

Peter Bala, Sep 25 2013

Keywords

Comments

Companion sequence to A064570.

Examples

			a(3) = 1*1! + 3*3! + 3*5! + 1*7! = 5419.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] * (2*k+1)!, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 30 2017 *)

Formula

a(n) = Sum_{k = 0..n} binomial(n,k)*(2*k + 1)!.
Clearly a(n) is always odd; indeed, for n >= 1, a(n) = 1 + 6*n*b(n-1), where b(n) = [1, 11, 301, 15991, 1392761, ...] is the binomial transform of A051618.
a(n) = Integral_{x >= 0} x*(1 + x^2)^n*exp(-x) dx.
a(n) = (2*n + 1)*A064570(n) - 2*n*A064570(n-1).
Recurrence equation: a(n) = 1 + 2*n*(2*n + 1)*a(n-1) - 2*n*(2*n - 2)*a(n-2) with a(0) = 1 and a(1) = 7.
O.g.f.: Sum_{k >= 0} (2*k + 1)!*x^k/(1 - x)^(k + 1) = 1 + 7*x + 133*x^2 + 5419*x^3 + ....
a(n) ~ sqrt(Pi) * 2^(2*n + 2) * n^(2*n + 3/2) / exp(2*n). - Vaclav Kotesovec, Oct 30 2017
From Peter Bala, Nov 26 2017: (Start)
E.g.f.: exp(x)*Sum_{n >= 0} A000407(n)*x^n.
a(k) = a(0) (mod k) for all k (by the inhomogeneous recurrence equation).
More generally a(n+k) = a(n) (mod k) for all n and k (by an induction argument on n).
It follows that for each positive integer k, the sequence a(n) (mod k) is periodic, with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 7, 3, 9, 5, 1, 7, 3, 9, 5, ... with exact period 5. (End)

A294353 Product of first n terms of the binomial transform of n^n (A086331).

Original entry on oeis.org

1, 2, 14, 602, 236586, 1116922506, 78020387811618, 95634036502805444826, 2378081951650318040462277306, 1361239109900199746154166909875717978, 20062823024247092576000017563809908231829439138, 8420023655209092490508999978430595224656730339006712229850
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[1 + Sum[Binomial[m, k]*k^k, {k, 1, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * n^(n*(n+1)/2 + 1/12 + exp(-1)/2) / exp(n^2/4 - n*exp(-1)), where c = 1.981849007720509372587479129359338230641860983165241915197508762536...
Showing 1-2 of 2 results.