A294399 Solution of the complementary equation a(n) = a(n-1) + b(n-2) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 8, 15, 23, 32, 42, 54, 67, 81, 96, 112, 129, 148, 168, 189, 211, 234, 258, 283, 310, 338, 367, 397, 428, 460, 493, 527, 563, 600, 638, 677, 717, 758, 800, 843, 887, 933, 980, 1028, 1077, 1127, 1178, 1230, 1283, 1337, 1392, 1448, 1506, 1565, 1625, 1686
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + b(0) + 3 = 8 Complement: (b(n)) = (2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + b[n - 2] + 3; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294399 *) Table[b[n], {n, 0, 10}]
Comments