A294421 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 10, 19, 36, 63, 108, 181, 302, 496, 812, 1323, 2151, 3491, 5660, 9170, 14852, 24044, 38919, 62987, 101931, 164944, 266902, 431874, 698805, 1130709, 1829545, 2960286, 4789864, 7750184, 12540083, 20290303, 32830425, 53120767, 85951232, 139072040
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + 2*b(1) - b(0) = 10 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294421 *) Table[b[n], {n, 0, 10}]
Comments