cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294433 Expansion of (1+11*x+24*x^2+11*x^3+x^4)/(1-x)^5.

Original entry on oeis.org

1, 16, 94, 331, 871, 1906, 3676, 6469, 10621, 16516, 24586, 35311, 49219, 66886, 88936, 116041, 148921, 188344, 235126, 290131, 354271, 428506, 513844, 611341, 722101, 847276, 988066, 1145719, 1321531, 1516846, 1733056, 1971601, 2233969, 2521696, 2836366
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2017

Keywords

Programs

  • Magma
    [1 + 7*n/2 + 11*n^2/2 + 4*n^3 + 2*n^4: n in [0..30]]; // G. C. Greubel, Apr 29 2018
  • Maple
    seq(1 + 7*n/2 + 11*n^2/2 + 4*n^3 + 2*n^4,n=0..30); # Robert Israel, Oct 30 2017
  • Mathematica
    Table[1 + 7*n/2 + 11*n^2/2 + 4*n^3 + 2*n^4, {n, 0, 30}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1, 16, 94, 331, 871}, 30] (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    Vec((1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Oct 31 2017
    
  • PARI
    a(n) = my(t=n*(n+1)/2); 8*t^2+7*t+1; \\ Altug Alkan, Apr 30 2018
    

Formula

a(n) = 1 + 7*n/2 + 11*n^2/2 + 4*n^3 + 2*n^4. - Robert Israel, Oct 30 2017
From Colin Barker, Oct 31 2017: (Start)
G.f.: (1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)