cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163778 Odd terms in A054639.

Original entry on oeis.org

3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, 231, 233, 239, 243, 245, 251, 261, 273, 281, 293, 299, 303, 309, 323, 329, 359, 371, 375, 393, 411, 413, 419, 429
Offset: 1

Views

Author

Peter R. J. Asveld, Aug 11 2009

Keywords

Comments

Previous name was: The A_1-primes (Archimedes_1 primes).
We have: (1) N is an A_1-prime iff N is odd, p=2N+1 is a prime number and only one of +2 and -2 generates Z_p^* (the multiplicative group of Z_p); (2) N is an A_1-prime iff p=2N+1 is a prime number and exactly one of the following holds: (a) N == 1 (mod 4) and +2 generates Z_p^* but -2 does not, (b) N == 3 (mod 4) and -2 generates Z_p^* but +2 does not.
The A_1-primes are the odd T- or Twist-primes (the T-primes are the same as the Queneau-numbers, A054639). For the related A_0-, A^+_1- and A^-_1-primes, see A163777, A163779 and A163780. Considered as a set, the present sequence is the union of the A^+_1-primes (A163779) and the A^-_1-primes (A163780). It is also equal to the difference of A054639 and the A_0-primes (A163777).

Crossrefs

Programs

  • Mathematica
    follow[s_, f_] := Module[{t, k}, t = f[s]; k = 1; While[t>s, k++; t = f[t]]; If[s == t, k, 0]];
    okQ[n_] := n>1 && n == follow[1, Function[j, Ceiling[n/2] + (-1)^j*Ceiling[ (j-1)/2]]];
    A163778 = Select[Range[1000], okQ] (* Jean-François Alcover, Jun 07 2018, after Andrew Howroyd *)
  • PARI
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={n>1 && n==Follow(1, j->ceil(n/2) + (-1)^j*ceil((j-1)/2))}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    ok(n)={n>1 && n%2==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%4==3, n, 2*n)}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Extensions

a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Joerg Arndt, Mar 23 2018

A294673 Order of the "inside-out" permutation on 2n+1 letters.

Original entry on oeis.org

1, 3, 5, 4, 9, 11, 9, 5, 12, 12, 7, 23, 8, 20, 29, 6, 33, 35, 20, 39, 41, 28, 12, 36, 15, 51, 53, 36, 44, 24, 20, 7, 65, 36, 69, 60, 42, 15, 20, 52, 81, 83, 9, 60, 89, 60, 40, 95, 12, 99, 84, 66, 105, 28, 18, 37, 113, 30, 92, 119, 81, 36, 25, 8, 36, 131, 22, 135, 20, 30, 47, 60, 48, 116, 132, 100, 51, 155
Offset: 0

Views

Author

P. Michael Hutchins, Nov 06 2017

Keywords

Comments

The "inside-out" permutation (closely related to the Mongean shuffle, see A019567) sends (t_1, t_2, ..., t_{2n+1}) to (t_{n+1}, t_{n+2}, t_{n}, t_{n+3}, t_{n-1}, ..., t_1). For n = 0, 1, 2, 3, this is (1), (2,3,1), (3,4,2,5,1), (4,5,3,6,2,7,1), whose orders are respectively 1,3,5,4.
This is the odd bisection of A238371 and also the odd bisection of A003558 (see Joseph L. Wetherell's comment below).

Examples

			For n=2: Iterating the "inside-out" permutation of a string of length 2n+1=5:
12345
34251
25413
41532
53124
12345
...
which has order a(2) = 5.
		

Crossrefs

Programs

  • Magma
    f:=func;
    [f(n): n in [0..100]]; // Joseph L. Wetherell, Nov 12 2017
    
  • Magma
    [Order(Integers(4*n+3)!-2*(-1)^n): n in [0..100]]; // Joseph L. Wetherell, Nov 15 2017
  • Maple
    f:= proc(n)
      ilcm(op(map(nops,convert(map(op, [[n+1],seq([n+1+i,n+1-i],i=1..n)]),disjcyc))))
    end proc:
    map(f, [$0..100]); # Robert Israel, Nov 09 2017
  • Mathematica
    a[n_] := MultiplicativeOrder[-2(-1)^n, 4n+3];
    a /@ Range[0, 100] (* Jean-François Alcover, Apr 07 2020 *)
  • PARI
    Follow(s,f)={my(t=f(s),k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    CyclePoly(n,x)={my(p=0); for(i=1, 2*n+1, my(l=Follow(i, j->n+1+(-1)^j*ceil((j-1)/2) )); if(l,p+=x^l)); p}
    a(n)={my(p=CyclePoly(n,x), m=1); for(i=1,poldegree(p),if(polcoeff(p,i), m=lcm(m,i))); m} \\ Andrew Howroyd, Nov 08 2017
    
  • PARI
    a(n)=znorder(Mod(if(n%2,2,-2),4*n+3)) \\ See Wetherell formula; Charles R Greathouse IV, Nov 15 2017
    

Formula

The permutation sends i (1 <= i <= 2n+1) to p(i) = n + 1 + f(i), where f(i) = (-1)^i*ceiling((i-1)/2).
a(n) = minimal k>0 such that p^k() = p^0().
a((A163778(n)-1)/2) = A163778(n). - Andrew Howroyd, Nov 11 2017.
From Joseph L. Wetherell, Nov 14 2017: (Start)
a(n) is equal to the order of multiplication-by-2 acting on the set of nonzero elements in (Z/(4n+3)Z), modulo the action of +-1. To be precise, identify i=1,2,...,2*n+1 with the odd representatives J=1,3,...,4*n+1 of this set, via the map J = 2*i-1. It is not hard to show that the induced permutation on the set of J values is given on integer representatives by J -> (4*n+3+J)/2 if i=(J+1)/2 is even and J -> (4*n+3-J)/2 if i=(J+1)/2 is odd. It follows that this induces the permutation J -> +-J/2 (mod 4*n+3), from which we immediately see that the order is as stated.
Note that the order of 2 acting on (Z/(4n+3)Z)/{+-1} is the same as the order of either 2 or -2 acting on (Z/(4n+3)Z), depending on which of these is a quadratic residue modulo 4n+3. Thus an equivalent (and often easier) way to compute a(n) is as the order of -2*(-1)^n acting on (Z/(4n+3)Z).
Among other things, the lower and upper bounds log_2(n) + 2 < a(n) <= 2*n+1 follow immediately.
(End)
It appears that the upper bound a(n) = 2n+1 occurs iff 2n+1 belongs to A163778 or equivalently iff n belongs to A294434. This almost (but not quite) follows from the above comments by Andrew Howroyd and Joseph L. Wetherell. - N. J. A. Sloane, Nov 16 2017
Showing 1-2 of 2 results.