A294436 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^5.
1, 33, 1268, 50600, 1972128, 75121312, 2803732096, 102885494016, 3722920064000, 133152625650176, 4715897847097344, 165643005814853632, 5776871664703455232, 200235592430802124800, 6903358709034568712192, 236882142098621090889728, 8094539021386254685569024
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..300
- N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.
- M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.
Crossrefs
Programs
-
Maple
A:=proc(n,k) local j; add(binomial(n,j),j=0..k); end; S:=proc(n,p) local i; global A; add(A(n,i)^p, i=0..n); end; [seq(S(n,5),n=0..30)];
-
Mathematica
Table[Sum[Sum[Binomial[n,k], {k,0,m}]^5, {m,0,n}], {n,0,15}] (* Vaclav Kotesovec, Jun 07 2019 *)
-
PARI
a(n) = sum(m=0, n, sum(k=0, m, binomial(n,k))^5); \\ Michel Marcus, Nov 18 2017
Formula
a(n) ~ n * 2^(5*n - 1). - Vaclav Kotesovec, Jun 07 2019