cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294468 Inverse binomial transform of A088311.

Original entry on oeis.org

1, 0, 1, 8, 9, 224, 1225, 11304, 103537, 1431296, 15642801, 206721800, 3295533241, 47467875168, 859354139449, 15596241280424, 283240963555425, 5859309797252864, 129874369387025377, 2752905169704533256, 67640333903657850601
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}]
    max = 20; t = Table[k!*PartitionsQ[k], {k, 0, max}]; Table[Differences[t, n], {n, 0, max}][[All, 1]] (* Jean-François Alcover, Nov 02 2017 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A088311(k).
a(n) ~ exp(-1) * n! * A000009(n).
a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(n/3) - n - 1) * n^(n - 1/4) / (4*3^(1/4)).
E.g.f.: exp(-x) * Product_{k>=1} (1 + x^k). - Ilya Gutkovskiy, Oct 15 2018