A294359 a(n) = [x^n] F(x)^(-(n+1)^2) such that F(x) = F(x^2) + x*F(x^4), where F(x) = Sum_{n>=0} x^A003714(n) and A003714 is the Fibbinary numbers.
1, -4, 36, -544, 12000, -353016, 13024690, -578027008, 29965705056, -1776380879600, 118487748235604, -8781184406967264, 715759620936227036, -63634560244855290488, 6127715132571003255000, -635341671628285381320704, 70567080867797749860480968, -8358996420744136578157248864, 1051888164647093035820630830470, -140135781917815169726696222119200, 19704058040921706609228103696785954
Offset: 0
Keywords
Examples
Given the characteristic function of the Fibbinary numbers (A003714): F(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^9 + x^10 + x^16 + x^17 + x^18 + x^20 + x^21 + x^32 + x^33 + x^34 + x^36 + x^37 + x^40 + x^41 + x^42 + x^64 + x^65 + x^66 + x^68 + x^69 + x^72 + x^73 + x^74 + x^80 +...+ x^A003714(n) +... such that F(x) = F(x^2) + x*F(x^4), then this sequence equals the coefficients of x^n in F(x)^(-(n+1)^2). ILLUSTRATION OF TERMS. The table of coefficients of x^k in F(x)^(-n^2) begins: n=1: [1, -1, 0, 1, -2, 1, 2, -4, 2, 3, -8, 7, 4, -16, 16, 2, -30, ...]; n=2: [1, -4, 6, 0, -19, 40, -26, -56, 166, -160, -110, 560, -705, ...]; n=3: [1, -9, 36, -75, 36, 279, -942, 1278, 531, -5956, 11700, ...]; n=4: [1, -16, 120, -544, 1548, -2192, -2720, 23936, -63426, 67984, ...]; n=5: [1, -25, 300, -2275, 12000, -45005, 112450, -116350, -441375, ...]; n=6: [1, -36, 630, -7104, 57573, -353016, 1668774, -5996664, ...]; n=7: [1, -49, 1176, -18375, 209426, -1846859, 13024690, -74680760, ...]; n=8: [1, -64, 2016, -41600, 631216, -7491392, 72180992, -578027008, ...]; ... in which the main diagonal forms this sequence. RELATED SEQUENCES. Terms (-1)^n * a(n)/(n+1) begin: [1, 2, 12, 136, 2400, 58836, 1860670, 72253376, 3329522784, 177638087960, ...]. Sequence A294475(n) = (-1)^n * a(n)/(n+1)^2 and begins: [1, 1, 4, 34, 480, 9806, 265810, 9031672, 369946976, 17763808796, ...].
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..600
Programs
-
Mathematica
terms = 21; selfibb = Select[Range[terms], BitAnd[#, 2*#] == 0&]; lenfibb = Length[selfibb]; fibb[0] = 0; fibb[n_] := selfibb[[n]]; F[x_] = Sum[x^fibb[n], {n, 0, lenfibb}]; a[n_] := SeriesCoefficient[F[x]^(-(n + 1)^2), {x, 0, n}]; Array[a, terms, 0] (* Jean-François Alcover, Nov 04 2017 *)
Formula
a(n) = (-1)^n * n^2 * A294475(n).
Comments