cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A294359 a(n) = [x^n] F(x)^(-(n+1)^2) such that F(x) = F(x^2) + x*F(x^4), where F(x) = Sum_{n>=0} x^A003714(n) and A003714 is the Fibbinary numbers.

Original entry on oeis.org

1, -4, 36, -544, 12000, -353016, 13024690, -578027008, 29965705056, -1776380879600, 118487748235604, -8781184406967264, 715759620936227036, -63634560244855290488, 6127715132571003255000, -635341671628285381320704, 70567080867797749860480968, -8358996420744136578157248864, 1051888164647093035820630830470, -140135781917815169726696222119200, 19704058040921706609228103696785954
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2017

Keywords

Comments

It is conjectured that all terms are even after the initial '1'.
Fibbinary numbers are integers whose binary representation contains no consecutive ones (see A003714 for definition); it is unexpected that the characteristic function F(x) of the Fibbinary numbers would have only even coefficients of x^n in the negative square powers F(x)^(-(n+1)^2), as described by this sequence.

Examples

			Given the characteristic function of the Fibbinary numbers (A003714):
F(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^9 + x^10 + x^16 + x^17 + x^18 + x^20 + x^21 + x^32 + x^33 + x^34 + x^36 + x^37 + x^40 + x^41 + x^42 + x^64 + x^65 + x^66 + x^68 + x^69 + x^72 + x^73 + x^74 + x^80 +...+ x^A003714(n) +...
such that F(x) = F(x^2) + x*F(x^4),
then this sequence equals the coefficients of x^n in F(x)^(-(n+1)^2).
ILLUSTRATION OF TERMS.
The table of coefficients of x^k in F(x)^(-n^2) begins:
n=1: [1, -1, 0, 1, -2, 1, 2, -4, 2, 3, -8, 7, 4, -16, 16, 2, -30, ...];
n=2: [1, -4, 6, 0, -19, 40, -26, -56, 166, -160, -110, 560, -705, ...];
n=3: [1, -9, 36, -75, 36, 279, -942, 1278, 531, -5956, 11700, ...];
n=4: [1, -16, 120, -544, 1548, -2192, -2720, 23936, -63426, 67984, ...];
n=5: [1, -25, 300, -2275, 12000, -45005, 112450, -116350, -441375, ...];
n=6: [1, -36, 630, -7104, 57573, -353016, 1668774, -5996664, ...];
n=7: [1, -49, 1176, -18375, 209426, -1846859, 13024690, -74680760, ...];
n=8: [1, -64, 2016, -41600, 631216, -7491392, 72180992, -578027008, ...]; ...
in which the main diagonal forms this sequence.
RELATED SEQUENCES.
Terms (-1)^n * a(n)/(n+1) begin:
[1, 2, 12, 136, 2400, 58836, 1860670, 72253376, 3329522784, 177638087960, ...].
Sequence A294475(n) = (-1)^n * a(n)/(n+1)^2 and begins:
[1, 1, 4, 34, 480, 9806, 265810, 9031672, 369946976, 17763808796, ...].
		

Crossrefs

Programs

  • Mathematica
    terms = 21; selfibb = Select[Range[terms], BitAnd[#, 2*#] == 0&]; lenfibb = Length[selfibb]; fibb[0] = 0; fibb[n_] := selfibb[[n]]; F[x_] = Sum[x^fibb[n], {n, 0, lenfibb}]; a[n_] := SeriesCoefficient[F[x]^(-(n + 1)^2), {x, 0, n}]; Array[a, terms, 0] (* Jean-François Alcover, Nov 04 2017 *)

Formula

a(n) = (-1)^n * n^2 * A294475(n).
Showing 1-1 of 1 results.