A294492 Numbers m that set records for the ratio A045763(n)/n.
1, 6, 10, 14, 18, 22, 26, 30, 42, 60, 66, 78, 90, 102, 114, 126, 138, 150, 210, 330, 390, 420, 510, 570, 630, 1050, 1470, 2310, 4620, 6930, 11550, 16170, 25410, 30030, 60060, 90090, 150150, 210210, 330330, 390390, 510510, 1021020, 1531530, 2552550, 3573570
Offset: 1
Keywords
Examples
1 is in the sequence since 1 is coprime to and a divisor of all numbers, therefore it has no nondivisors in the cototient, i.e., A045763(1)/1 = 0. The primes have no nondivisors in the cototient, 4 only has divisors in the cototient. 6 has the nondivisor 4 in the cototient, thus 1/6, thus it appears after 1 in the sequence. The following numbers do not appear, as 7 has none, 8 has one (6), 9 has one (6). 10 has the nondivisors (4,6,8) in the cototient, thus 3/10. Since 3/10 > 1/6, 10 is the next number in the sequence. Table of terms less than A002110(6): b(n) = A045763(n), c(n) = exponents of the smallest primes such that the product = n, e.g., "2 1 0 1" = 2^2 * 3^1 * 5^0 * 7^1 = 126. n a(n) b(n) c(n) 1 1 0 0 2 6 1 1 1 3 10 3 1 0 1 4 14 5 1 0 0 1 5 18 7 1 2 6 22 9 1 0 0 0 1 7 26 11 1 0 0 0 0 1 8 30 15 1 1 1 9 42 23 1 1 0 1 10 60 33 2 1 1 11 66 39 1 1 0 0 1 12 78 47 1 1 0 0 0 1 13 90 55 1 2 1 14 102 63 1 1 0 0 0 0 1 15 114 71 1 1 0 0 0 0 0 1 16 126 79 1 2 0 1 17 138 87 1 1 0 0 0 0 0 0 1 18 150 99 1 1 2 19 210 147 1 1 1 1 20 330 235 1 1 1 0 1 21 390 279 1 1 1 0 0 1 22 420 301 2 1 1 1 23 510 367 1 1 1 0 0 0 1 24 570 411 1 1 1 0 0 0 0 1 25 630 463 1 2 1 1 26 1050 787 1 1 2 1 27 1470 1111 1 1 1 2 28 2310 1799 1 1 1 1 1 29 4620 3613 2 1 1 1 1 30 6930 5443 1 2 1 1 1 31 11550 9103 1 1 2 1 1 32 16170 12763 1 1 1 2 1 33 25410 20083 1 1 1 1 2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..53
- Michael De Vlieger, Numbers m that set records for the ratio A045763(n)/n.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,n; a:=-1; for n from 1 to q do b:=n+1-tau(n)-phi(n); if b>a then a:=b; print(n); fi; od; end: P(10^2); # Paolo P. Lava, Nov 17 2017
-
Mathematica
With[{s = Array[(# - (DivisorSigma[0, #] + EulerPhi@ # - 1))/# &, 10^6]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]]
Comments