cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294500 Binomial transform of the number of planar partitions (A000219).

Original entry on oeis.org

1, 2, 6, 19, 60, 185, 559, 1662, 4875, 14134, 40564, 115370, 325465, 911355, 2534595, 7004827, 19246626, 52596377, 143006632, 386984573, 1042537831, 2796803110, 7473161196, 19893461042, 52767059608, 139488323734, 367540167625, 965445514862, 2528516552660
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2017

Keywords

Comments

Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625

Crossrefs

Programs

  • Mathematica
    nmax = 40; s = CoefficientList[Series[Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A000219(k).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) - Zeta(3)/12) * 2^(n + 7/18) * Zeta(3)^(7/36) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: (1/(1 - x))*exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)). - Ilya Gutkovskiy, Aug 20 2018