cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294515 Denominators of partial sums of the reciprocals of the decagonal numbers.

Original entry on oeis.org

1, 10, 270, 7020, 119340, 835380, 4176900, 242260200, 888287400, 32866633800, 1347531985800, 4042595957400, 28298171701800, 1499803100195400, 28496258903712600, 3476543586252937200, 3476543586252937200, 26653500827939185200, 1945705560439560519600, 1945705560439560519600, 52534050131868134029200
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2017

Keywords

Comments

The corresponding numerators are given by A250551(n+1), n >= 0.
The positive decagonal numbers are A001107(k+1) = (k + 1)*(4*k + 1), k >= 0.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [4,1].
The limit of the series is V(4,1) = lim_{n -> oo} V(4,1;n) = log(2) + Pi/6 = 1.216745956158244182... given in A244647.

Examples

			The rationals V(4,1;n), n >= 0, begin: 1, 11/10, 307/270, 8117/7020, 139393/119340, 982381/835380, 4935773/4176900, 287319059/242260200, 1056494083/888287400, 39179109811/32866633800, ...
V(4,1;10^4) = 1.216720959 (Maple, 10 digits) to be compared with 1.216745956 from V(4,1) from A244647.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.

Crossrefs

Programs

  • Maple
    map(denom,ListTools:-PartialSums([seq(1/((k+1)*(4*k+1)),k=0..50)])); # Robert Israel, Nov 08 2017
  • Mathematica
    Denominator@ Accumulate@ Array[1/PolygonalNumber[10, #] &, 23] (* Michael De Vlieger, Nov 02 2017 *)

Formula

a(n) = denominator(V(4,1;n)) with V(4,1;n) = Sum_{k=0..n} 1/((k + 1)*(4*k + 1)) = Sum_{k=0..n} 1/A001107(n+1) = (1/3)*Sum_{k=0..n} (4/(4*k + 1) - 1/(k+1)).
a(n) = A250550(n+1)/(n+1) [conjecture].
In the Koecher reference v_4(1) = (3/4)*V(4,1) = (3/4)*log(2) + Pi/8 = 0.91255946711868313687... .