cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294529 Binomial transform of A001156.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 86, 192, 420, 905, 1939, 4163, 8987, 19494, 42368, 91990, 199127, 429345, 921982, 1972553, 4206909, 8949412, 19001874, 40293048, 85373962, 180826115, 382957231, 811027414, 1717497958, 3636335170, 7695599294, 16275268520, 34389570596
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; s = CoefficientList[Series[Product[1/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A001156(k).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)) * Zeta(3/2)^(2/3) * 2^(n - 7/6) / (sqrt(3) * Pi^(7/6) * n^(7/6)).
G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 - x^(k^2)/(1 - x)^(k^2)). - Ilya Gutkovskiy, Aug 20 2018