cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294530 Binomial transform of A023871.

Original entry on oeis.org

1, 2, 8, 33, 131, 497, 1834, 6635, 23622, 82942, 287656, 986552, 3349165, 11263951, 37558235, 124240204, 407951848, 1330340478, 4310385956, 13881618570, 44451643311, 141578435571, 448634389388, 1414774796929, 4441038400458, 13879652908322, 43197263002063
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; s = CoefficientList[Series[Product[1/(1 - x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A023871(k).
a(n) ~ exp(2^(5/4) * 3^(-5/4) * 5^(-1/4) * Pi * n^(3/4) + Pi^2 * sqrt(n) / (4*sqrt(30)) - Pi^3 * n^(1/4) / (32 * 2^(1/4) * 15^(3/4)) + Pi^4/3840 - Zeta(3)/(4*Pi^2)) * 2^(n - 7/8) / (15^(1/8) * n^(5/8)).
G.f.: (1/(1 - x))*exp(Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x)^k)). - Ilya Gutkovskiy, Aug 20 2018