A294559 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 13, 28, 57, 104, 183, 312, 523, 866, 1423, 2327, 3793, 6166, 10008, 16226, 26289, 42573, 68923, 111560, 180550, 292180, 472803, 765059, 1237941, 2003083, 3241112, 5244286, 8485492, 13729875, 22215467, 35945445, 58161018, 94106572, 152267702, 246374389
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) + 2*b(0) = 13 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294559 *) Table[b[n], {n, 0, 10}]
Comments