A294583 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j^k*x^j)^(j^k).
1, 1, -1, 1, -1, -1, 1, -1, -4, 0, 1, -1, -16, -5, 0, 1, -1, -64, -65, -3, 1, 1, -1, -256, -665, -79, 23, 0, 1, -1, -1024, -6305, -1575, 831, 44, 1, 1, -1, -4096, -58025, -28255, 33335, 4789, 104, 0, 1, -1, -16384, -527345, -481623, 1323807, 411664, 15099, 70, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, ... -1, -4, -16, -64, -256, ... 0, -5, -65, -665, -6305, ... 0, -3, -79, -1575, -28255, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..113, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+k*j/d)) * A(n-j,k) for n > 0.