A294585 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j)^(j^k).
1, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 14, 5, 1, 1, 65, 98, 42, 7, 1, 1, 257, 794, 514, 103, 11, 1, 1, 1025, 6818, 7194, 2435, 289, 15, 1, 1, 4097, 60074, 107170, 69475, 12752, 690, 22, 1, 1, 16385, 535538, 1649322, 2177411, 715277, 58849, 1771, 30
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 2, 5, 17, 65, 257, ... 3, 14, 98, 794, 6818, ... 5, 42, 514, 7194, 107170, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..113, flattened
Formula
A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+k*j/d)) * A(n-j,k) for n > 0.