cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294592 a(n) = [x^n] (theta_3(x)/theta_4(x))^n, where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 32, 304, 3072, 32024, 340352, 3666016, 39878656, 437091892, 4819567552, 53401892240, 594093969408, 6631726263608, 74242911364864, 833237193123104, 9371924860764160, 105614054423502408, 1192210691317862048, 13478559927485340144, 152589996020498655232, 1729590806617202662528
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2017

Keywords

Crossrefs

Programs

  • Maple
    S:= series((JacobiTheta3(0,x)/JacobiTheta4(0,x))^n,x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x]/EllipticTheta[4, 0, x])^n, {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^(2 n), {k, 0, n}], {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^(2 n), {x, 0, n}], {n, 0, 21}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s], EllipticTheta[4, 0, r*s] + r*s*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s] == r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^(2*n).
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 11.61255065799699699891360038489317237925475956178123836149123386457... and
c = 0.34456510029264878768512693687607064416428117641473856418257649837... (End)