cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294655 Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(3*k-2))*(1 - x^(2*k))^(k*(3*k+2))).

Original entry on oeis.org

1, 1, 6, 14, 45, 106, 290, 683, 1698, 3918, 9179, 20640, 46444, 101819, 222092, 475886, 1012270, 2124725, 4425195, 9118705, 18648048, 37797126, 76062443, 151889787, 301296200, 593593192, 1162276735, 2261819285, 4376578818, 8421295585, 16118902083, 30694325652, 58164428059
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2017

Keywords

Comments

Euler transform of the generalized octagonal numbers (A001082).

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (3 k - 2)) (1 - x^(2 k))^(k (3 k + 2))), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d^2 + d - Ceiling[d/2]^2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001082(k+1).
a(n) ~ exp(Pi * 2^(3/2) * n^(3/4) / (3*5^(1/4)) + 3*Zeta(3) * sqrt(5*n) / (2*Pi^2) - (45*Zeta(3)^2 / Pi^5 + Pi/6) * 5^(1/4) * (n^(1/4) / 2^(5/2)) + 225 * Zeta(3)^3 / (4*Pi^8) - Zeta(3) / (32*Pi^2) + 1/8) * Pi^(1/8) / (A^(3/2) * 2^(77/48) * 5^(5/32) * n^(21/32)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 07 2017