cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294683 Growth of the Lamplighter group: number of elements in the Lamplighter group L_2 = Z/2Z wr Z of length up to n with respect to the standard generating set {a,t}.

Original entry on oeis.org

1, 4, 10, 22, 44, 84, 155, 278, 490, 850, 1457, 2474, 4167, 6974, 11609, 19238, 31762, 52274, 85806, 140534, 229735, 374958, 611158, 995016, 1618409, 2630222, 4271663, 6933430, 11248251, 18240668, 29569464, 47920016, 77639264, 125763290, 203680213, 329821130, 534014584
Offset: 0

Views

Author

Zoran Sunic, Nov 06 2017

Keywords

Comments

The group is presented by L_2 = .

Examples

			a(2)=10, since the elements of length up to 2 are 1, a, t, t^-1, at, at^-1, ta, t^2, t^-1a, t^-2.
		

Crossrefs

Partial sums of A288348.

Programs

  • Mathematica
    CoefficientList[ Series[((x^2 + x + 1) (x - 1) (x + 1)^3)/((x^3 + x^2 - 1)^2 (x^2 + x - 1)), {x, 0, 36}], x] (* or *)
    LinearRecurrence[{1, 3, 0, -5, -3, 2, 3, 1}, {1, 4, 10, 22, 44, 84, 155, 278}, 37] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    Vec((1-x)*(1+x)^3*(1+x+x^2)/((1-x-x^2)*(1-x^2-x^3)^2) + O(x^40)) \\ Michel Marcus, Nov 07 2017

Formula

G.f.: (1-x)(1+x)^3(1+x+x^2) / ((1-x-x^2)(1-x^2-x^3)^2).

Extensions

More terms from Michel Marcus, Nov 07 2017