cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A364782 Order of the general symplectic group of 6 X 6 matrices over Z_n.

Original entry on oeis.org

1, 1451520, 18341406720, 6088116142080, 1828008000000000, 26622918682214400, 3281486623259443200, 25535409887190712320, 575572777593233172480, 2653390172160000000000, 73385854415869121280000, 111664614320486586777600, 2947127504061746732912640, 4763143463393546993664000
Offset: 1

Views

Author

Robin Visser, Aug 07 2023

Keywords

Comments

Let M be any fixed nonsingular skew-symmetric 6 X 6 matrix over the integers mod n. Then a(n) is the number of invertible 6 X 6 matrices A over the integers mod n such that A^T * M * A = c*M for some nonzero constant c (mod n), where A^T denotes the transpose of A.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(22*e - 13)*(p - 1)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 15] (* Amiram Eldar, Aug 08 2023 *)
  • Sage
    def a(n):
        return product([p^(22*n.valuation(p)-13)*(p-1)*(p^2-1)*(p^4-1)*(p^6-1)
            for p in n.prime_factors()])

Formula

a(n) = Product_{primes p dividing n} p^(22*v_p(n) - 13)*(p - 1)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1), where v_p(n) is the largest power k such that p^k divides n.
Sum_{k=1..n} a(k) ~ c * n^23 / 23, where c = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6 + 1/p^9 - 1/p^10 + 1/p^11 - 1/p^12 - 1/p^13 + 1/p^14) = 0.5228053524... . - Amiram Eldar, Aug 08 2023
Showing 1-1 of 1 results.