cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294729 Numbers n such that 2^n - 1 is the product of three primes.

Original entry on oeis.org

6, 8, 10, 14, 15, 25, 26, 27, 29, 34, 38, 43, 47, 53, 62, 65, 71, 73, 79, 85, 93, 122, 133, 179, 193, 211, 254, 257, 277, 283, 311, 331, 349, 353, 389, 409, 443, 467, 499, 563, 577, 599, 613, 631, 643, 647, 683, 709, 751, 769, 829, 919, 941, 1039, 1103, 1117
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 07 2017

Keywords

Comments

The eighteenth composite term is 3481. No other composite terms up to 10000.

Examples

			a(1) = 6 because 2^6 - 1 = 63 = 3^2*7 is a 3-almost prime.
a(2) = 8 because 2^8 - 1 = 255 = 3*5*17 is a 3-almost prime.
		

Crossrefs

Cf. A000043 (product of one prime), A000225, A085724 (product of two primes), A135977.

Programs

  • Magma
    lst:=[]; factors:=func; bigomega:=func; IsCube:=func; for n in [2..254] do if IsPrime(n) then if bigomega(2^n-1) eq 3 then Append(~lst, n); end if; else f:=factors(n); a:=f[1,1]; if IsPrime(2^a-1) then if IsSquarefree(n) then if bigomega(n) eq 2 then b:=f[2,1]; if IsPrime(2^b-1) and IsPrime(Truncate((2^n-1)/((2^a-1)*(2^b-1)))) then Append(~lst, n); end if; end if; end if; if IsSquare(n) or IsCube(n) then if bigomega(Truncate((2^n-1)/(2^a-1))) eq 2 then Append(~lst, n); end if; end if; end if; end if; end for; lst;
    
  • Mathematica
    ParallelMap[ If[ PrimeOmega[2^# - 1] == 3, #, Nothing] &, Range@1250] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    is(n)=bigomega(2^n-1)==3

Extensions

a(28)-a(56) added from the Cunningham project