A294729 Numbers n such that 2^n - 1 is the product of three primes.
6, 8, 10, 14, 15, 25, 26, 27, 29, 34, 38, 43, 47, 53, 62, 65, 71, 73, 79, 85, 93, 122, 133, 179, 193, 211, 254, 257, 277, 283, 311, 331, 349, 353, 389, 409, 443, 467, 499, 563, 577, 599, 613, 631, 643, 647, 683, 709, 751, 769, 829, 919, 941, 1039, 1103, 1117
Offset: 1
Keywords
Examples
a(1) = 6 because 2^6 - 1 = 63 = 3^2*7 is a 3-almost prime. a(2) = 8 because 2^8 - 1 = 255 = 3*5*17 is a 3-almost prime.
Links
- Dario Alejandro Alpern, Integer factorization calculator
- John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers]
- S. S. Wagstaff, Jr., The Cunningham Project
Programs
-
Magma
lst:=[]; factors:=func
; bigomega:=func ; IsCube:=func ; for n in [2..254] do if IsPrime(n) then if bigomega(2^n-1) eq 3 then Append(~lst, n); end if; else f:=factors(n); a:=f[1,1]; if IsPrime(2^a-1) then if IsSquarefree(n) then if bigomega(n) eq 2 then b:=f[2,1]; if IsPrime(2^b-1) and IsPrime(Truncate((2^n-1)/((2^a-1)*(2^b-1)))) then Append(~lst, n); end if; end if; end if; if IsSquare(n) or IsCube(n) then if bigomega(Truncate((2^n-1)/(2^a-1))) eq 2 then Append(~lst, n); end if; end if; end if; end if; end for; lst; -
Mathematica
ParallelMap[ If[ PrimeOmega[2^# - 1] == 3, #, Nothing] &, Range@1250] (* Robert G. Wilson v, Nov 28 2017 *)
-
PARI
is(n)=bigomega(2^n-1)==3
Extensions
a(28)-a(56) added from the Cunningham project
Comments