A294755 Expansion of Product_{k>=1} ((1 + x^(2*k - 1))/(1 - x^(2*k - 1)))^(k^2).
1, 2, 2, 10, 18, 36, 86, 150, 326, 608, 1164, 2230, 4046, 7632, 13622, 24868, 44222, 78304, 138312, 240138, 418648, 718292, 1233494, 2097350, 3552370, 5987642, 10026088, 16745600, 27779030, 45970868, 75650248, 124100970, 202720814, 329909400, 535132036
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ exp(sqrt(2)*Pi * n^(3/4)/3 + 7*Zeta(3) * sqrt(n) / (2*Pi^2) + (Pi / (8*sqrt(2)) - 49*Zeta(3)^2 / (2^(3/2) * Pi^5)) * n^(1/4) + 22411*Zeta(3)^3 / (196*Pi^8) - Zeta(3)/(4*Pi^2) - 1/24) * sqrt(A) / (2^(113/48) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.
Comments