cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A294784 E.g.f. A(x) satisfies: A'(x) = (1 + A(x)^2)^2/4.

Original entry on oeis.org

1, 1, 2, 8, 46, 346, 3212, 35468, 453976, 6607936, 107781992, 1947158168, 38592660016, 832595731696, 19422479520992, 487137028505408, 13072025077208416, 373697069074031776, 11338183238037941312, 363881995144694554688, 12316073980019762824576, 438441199984650577010176, 16376568508223695174746752, 640396538780869661656846208, 26164698834332206196492375296, 1114866540340266230645081994496
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 46*x^4/4! + 346*x^5/5! + 3212*x^6/6! + 35468*x^7/7! + 453976*x^8/8! + 6607936*x^9/9! + 107781992*x^10/10! + 1947158168*x^11/11! + 38592660016*x^12/12! + 832595731696*x^13/13! + 19422479520992*x^14/14! + 487137028505408*x^15/15! +...
such that A'(x) = (1 + A(x)^2)^2/4.
RELATED SERIES.
Series_Reversion( Integral sqrt(1-x^2)/(1+x) dx ) = x + x^2/2! + 2*x^3/3! + 8*x^4/4! + 46*x^5/5! + 346*x^6/6! + 3212*x^7/7! + 35468*x^8/8! +...
which equals Integral A(x) dx.
(A(x)^2 - 1)/(A(x)^2 + 1) = x + x^2/2! + 2*x^3/3! + 8*x^4/4! + 46*x^5/5! + 346*x^6/6! + 3212*x^7/7! + 35468*x^8/8! +...
which equals Integral A(x) dx.
Note that asin( Integral A(x) dx ) = Series_Reversion(x + cos(x) - 1), the e.g.f. of A200317.
A(x)^2 = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 180*x^4/4! + 1472*x^5/5! + 14616*x^6/6! + 170728*x^7/7! + 2293320*x^8/8! + 34822592*x^9/9! + 589761216*x^10/10! +...
(A(x) - 1/A(x))/2 = x + x^2/2! + 5*x^3/3! + 26*x^4/4! + 196*x^5/5! + 1786*x^6/6! + 19550*x^7/7! + 248156*x^8/8! + 3588916*x^9/9! + 58220416*x^10/10! +...
(A(x) + 1/A(x))/2 = 1 + x^2/2! + 3*x^3/3! + 20*x^4/4! + 150*x^5/5! + 1426*x^6/6! + 15918*x^7/7! + 205820*x^8/8! + 3019020*x^9/9! + 49561576*x^10/10! +...
where (A(x) - 1/A(x))/2  =  (A(x) + 1/A(x))/2 * Integral A(x) dx.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); A = deriv( sin( serreverse( x + cos(x +x^2*O(x^n)) - 1 ) ) ); n!*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = deriv( serreverse( intformal( sqrt( (1-x)/(1+x +x*O(x^n)) ) ) ) ); n!*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1, n+1, A = 1 + intformal( (1 + A^2)^2/4 +x*O(x^n)) ); n!*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = d/dx sin( Series_Reversion( x + cos(x) - 1 ) ).
(2) A(x) = d/dx Series_Reversion( asin(x) + sqrt(1-x^2) - 1 ).
(3) A(x) = d/dx Series_Reversion( Integral sqrt(1-x^2)/(1+x) dx ).
(4) A(x) = sqrt(1 - B(x)^2) / (1 - B(x)) where B(x) = Integral A(x) dx.
(5) Integral A(x) dx = (A(x)^2 - 1)/(A(x)^2 + 1).
(6) A(x) = (A(x) + 1/A(x))/2 * ( 1 + Integral A(x) dx ).
(7) exp( Integral (A(x) + 1/A(x))/2 dx ) = 1 + Integral A(x) dx.
(8) A(x) = 1 + Integral (1 + A(x)^2)^2/4 dx.
a(n) ~ c * (2/(Pi-2))^n * n^(n-1/6) / exp(n), where c = 1.2415... - Vaclav Kotesovec, Nov 11 2017
Showing 1-1 of 1 results.