A294786 Number of ways to choose a set partition of a factorization of n into distinct factors greater than one such that different blocks have different products.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 11, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 9, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1
Keywords
Examples
The a(36)=11 ways are: (2)*(3)*(6), (2)*(3*6), (2*6)*(3), (2)*(18), (3)*(12), (4)*(9), (2*3*6), (2*18), (3*12), (4*9), (36).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Join@@Function[fac,Select[sps[fac],UnsameQ@@Times@@@#&]]/@sfs[n]],{n,100}]