cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A294788 Number of twice-factorizations of type (Q,P,Q) and product n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 13, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 11, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2017

Keywords

Comments

a(n) is the number of ways to choose a product-preserving permutation of a set partition of a factorization of n into distinct factors greater than one.

Examples

			The a(36) = 13 twice-factorizations are: (2)*(3)*(6), (2)*(3*6), (6)*(2*3), (2*3)*(6), (2*6)*(3), (2*3*6), (2)*(18), (2*18), (3)*(12), (3*12), (4)*(9), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Total[Sum[Times@@Factorial/@Length/@Split[Sort[Times@@@f]],{f,sps[Sort[#]]}]&/@sfs[n]],{n,nn}]

A295279 Number of strict tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 12, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 12, 2, 8, 1, 4, 2, 8, 1, 44, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2017

Keywords

Comments

A strict tree-factorization of n is either (case 1) the number n itself or (case 2) a set of two or more strict tree-factorizations, one of each factor in a factorization of n into distinct factors greater than one.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(30) = 8 strict tree-factorizations are: 30, (2*3*5), (2*15), (2*(3*5)), (3*10), (3*(2*5)), (5*6), (5*(2*3)).
The a(36) = 12 strict tree-factorizations are: 36, (2*3*6), (2*3*(2*3)), (2*18), (2*(2*9)), (2*(3*6)), (2*(3*(2*3))), (3*12), (3*(2*6)), (3*(2*(2*3))), (3*(3*4)), (4*9).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sft[n_]:=1+Total[Function[fac,Times@@sft/@fac]/@Select[sfs[n],Length[#]>1&]];
    Array[sft,100]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w} \\ Andrew Howroyd, Nov 18 2018

Formula

a(product of n distinct primes) = A005804(n).
a(prime^n) = A273873(n).
Dirichlet g.f.: (Zeta(s) + Product_{n >= 2}(1 + a(n)/n^s))/2.

A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

By convention a(1) = 1.
Values can be 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 60, 63, 84, 90, etc. - Robert G. Wilson v, Dec 10 2017

Examples

			The a(256) = 10 ways are:
(2^1)^8    (2^2)^4   (2^4)^2  (2^8)^1
(4^1)^4    (4^2)^2   (4^4)^1
(16^1)^2   (16^2)^1
(256^1)^1
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,t;
      m:= igcd(seq(t[2],t=ifactors(n)[2]));
      add(numtheory:-tau(d),d=numtheory:-divisors(m))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 19 2017
  • Mathematica
    Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

Formula

a(A175082(k)) = 1, a(A093771(k)) = 3.
a(n) = Sum_{d|A052409(n)} A000005(d).

A294787 Number of ways to choose a set partition of a factorization of n into distinct factors greater than one.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 12, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 10, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Total[BellB/@Length/@strfacs[n]],{n,100}]

Formula

A294786(n) <= a(n) <= A294788(n).

A320887 Number of multiset partitions of factorizations of n into factors > 1 such that all the parts have the same product.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 9, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 12, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 22, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 9, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 12, 1, 5, 1, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(36) = 12 multiset partitions:
  (2*2*3*3)    (6)*(2*3)  (6)*(6)  (36)
  (2*3)*(2*3)  (2*2*9)    (2*18)
               (2*3*6)    (3*12)
               (3*3*4)    (4*9)
                          (6*6)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[facs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A320887(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, binomial(A001055(sqrtnint(n,d)) + d - 1, d))); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = Sum_{d|A052409(n)} binomial(A001055(n^(1/d)) + d - 1, d).
a(n) = a(A046523(n)). - Antti Karttunen, Nov 17 2019

Extensions

Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019

A320886 Number of multiset partitions of integer partitions of n where all parts have the same product.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 25, 33, 54, 73, 107, 140, 207, 264, 369, 479, 652, 828, 1112, 1400, 1848, 2326, 3009, 3762, 4856, 6020, 7648, 9478, 11942, 14705, 18427, 22576, 28083, 34350, 42429, 51714, 63680, 77289, 94618, 114648, 139773, 168799, 205144, 247128, 299310, 359958, 434443, 521255, 627812, 751665, 902862
Offset: 0

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 25 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (12)       (13)          (14)             (15)
       (1)(1)  (111)      (22)          (23)             (24)
               (1)(11)    (112)         (113)            (33)
               (1)(1)(1)  (1111)        (122)            (114)
                          (2)(2)        (1112)           (123)
                          (1)(111)      (11111)          (222)
                          (11)(11)      (2)(12)          (1113)
                          (1)(1)(11)    (1)(1111)        (1122)
                          (1)(1)(1)(1)  (11)(111)        (3)(3)
                                        (1)(1)(111)      (11112)
                                        (1)(11)(11)      (111111)
                                        (1)(1)(1)(11)    (12)(12)
                                        (1)(1)(1)(1)(1)  (2)(112)
                                                         (2)(2)(2)
                                                         (1)(11111)
                                                         (11)(1111)
                                                         (111)(111)
                                                         (1)(1)(1111)
                                                         (1)(11)(111)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(111)
                                                         (1)(1)(11)(11)
                                                         (1)(1)(1)(1)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Times@@@#&]],{n,8}]
  • PARI
    G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
    a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[,2]))) \\ Andrew Howroyd, Oct 26 2018

Extensions

a(13)-a(50) from Andrew Howroyd, Oct 26 2018

A320888 Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 8, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 9, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(144) = 20 set multipartitions:
  (2*3*4*6)    (2*8*9)     (2*72)     (144)
  (2*6)*(2*6)  (3*6*8)     (3*48)
  (2*6)*(3*4)  (2*3*24)    (4*36)
  (3*4)*(3*4)  (2*4*18)    (6*24)
               (2*6*12)    (8*18)
               (3*4*12)    (9*16)
               (12)*(2*6)  (12)*(12)
               (12)*(3*4)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[strfacs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]

Formula

a(n) = Sum_{d|A052409(n)} binomial(A045778(n^(1/d)) + d - 1, d).

A320889 Number of set partitions of strict factorizations of n into factors > 1 such that all the blocks have the same product.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 6, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 5, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(144) = 17 set partitions:
  (2*3*4*6)    (2*8*9)     (2*72)  (144)
  (2*6)*(3*4)  (3*6*8)     (3*48)
               (2*3*24)    (4*36)
               (2*4*18)    (6*24)
               (2*6*12)    (8*18)
               (3*4*12)    (9*16)
               (2*6)*(12)
               (3*4)*(12)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Join@@Table[Select[sps[fac],SameQ@@Times@@@#&],{fac,strfacs[n]}]],{n,100}]

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]

A301756 Number of ways to choose disjoint strict rooted partitions of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 15, 22, 30, 42, 60, 85, 114, 155, 206, 286, 394, 524, 683, 910, 1187, 1564, 2090, 2751, 3543, 4606, 5917, 7598, 9771, 12651, 16260, 20822, 26421, 33525, 42463, 53594, 67337, 85299
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(8) = 10 rooted twice-partitions:
(6), (51), (42), (321),
(5)(), (41)(), (32)(), (4)(1), (3)(2),
(3)(1)().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],And[UnsameQ@@Total/@#,UnsameQ@@Join@@#]&]//Length,{n,20}]
Showing 1-10 of 10 results.