cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320887 Number of multiset partitions of factorizations of n into factors > 1 such that all the parts have the same product.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 9, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 12, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 22, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 9, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 12, 1, 5, 1, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(36) = 12 multiset partitions:
  (2*2*3*3)    (6)*(2*3)  (6)*(6)  (36)
  (2*3)*(2*3)  (2*2*9)    (2*18)
               (2*3*6)    (3*12)
               (3*3*4)    (4*9)
                          (6*6)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[facs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A320887(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, binomial(A001055(sqrtnint(n,d)) + d - 1, d))); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = Sum_{d|A052409(n)} binomial(A001055(n^(1/d)) + d - 1, d).
a(n) = a(A046523(n)). - Antti Karttunen, Nov 17 2019

Extensions

Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019

A320886 Number of multiset partitions of integer partitions of n where all parts have the same product.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 25, 33, 54, 73, 107, 140, 207, 264, 369, 479, 652, 828, 1112, 1400, 1848, 2326, 3009, 3762, 4856, 6020, 7648, 9478, 11942, 14705, 18427, 22576, 28083, 34350, 42429, 51714, 63680, 77289, 94618, 114648, 139773, 168799, 205144, 247128, 299310, 359958, 434443, 521255, 627812, 751665, 902862
Offset: 0

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 25 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (12)       (13)          (14)             (15)
       (1)(1)  (111)      (22)          (23)             (24)
               (1)(11)    (112)         (113)            (33)
               (1)(1)(1)  (1111)        (122)            (114)
                          (2)(2)        (1112)           (123)
                          (1)(111)      (11111)          (222)
                          (11)(11)      (2)(12)          (1113)
                          (1)(1)(11)    (1)(1111)        (1122)
                          (1)(1)(1)(1)  (11)(111)        (3)(3)
                                        (1)(1)(111)      (11112)
                                        (1)(11)(11)      (111111)
                                        (1)(1)(1)(11)    (12)(12)
                                        (1)(1)(1)(1)(1)  (2)(112)
                                                         (2)(2)(2)
                                                         (1)(11111)
                                                         (11)(1111)
                                                         (111)(111)
                                                         (1)(1)(1111)
                                                         (1)(11)(111)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(111)
                                                         (1)(1)(11)(11)
                                                         (1)(1)(1)(1)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Times@@@#&]],{n,8}]
  • PARI
    G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
    a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[,2]))) \\ Andrew Howroyd, Oct 26 2018

Extensions

a(13)-a(50) from Andrew Howroyd, Oct 26 2018

A320888 Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 8, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 9, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(144) = 20 set multipartitions:
  (2*3*4*6)    (2*8*9)     (2*72)     (144)
  (2*6)*(2*6)  (3*6*8)     (3*48)
  (2*6)*(3*4)  (2*3*24)    (4*36)
  (3*4)*(3*4)  (2*4*18)    (6*24)
               (2*6*12)    (8*18)
               (3*4*12)    (9*16)
               (12)*(2*6)  (12)*(12)
               (12)*(3*4)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[strfacs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]

Formula

a(n) = Sum_{d|A052409(n)} binomial(A045778(n^(1/d)) + d - 1, d).
Showing 1-3 of 3 results.