A320887 Number of multiset partitions of factorizations of n into factors > 1 such that all the parts have the same product.
1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 9, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 12, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 22, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 9, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 12, 1, 5, 1, 7, 5
Offset: 1
Keywords
Examples
The a(36) = 12 multiset partitions: (2*2*3*3) (6)*(2*3) (6)*(6) (36) (2*3)*(2*3) (2*2*9) (2*18) (2*3*6) (3*12) (3*3*4) (4*9) (6*6)
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[facs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]
-
PARI
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409 A320887(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, binomial(A001055(sqrtnint(n,d)) + d - 1, d))); \\ Antti Karttunen, Nov 17 2019
Formula
a(n) = a(A046523(n)). - Antti Karttunen, Nov 17 2019
Extensions
Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019