cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A295935 Number of twice-factorizations of n where the latter factorizations are constant, i.e., type (P,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 12, 1, 5, 1, 5, 2, 2, 1, 10, 3, 2, 5, 5, 1, 5, 1, 18, 2, 2, 2, 15, 1, 2, 2, 10, 1, 5, 1, 5, 5, 2, 1, 22, 3, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 13, 1, 2, 5, 40, 2, 5, 1, 5, 2, 5, 1, 28, 1, 2, 5, 5, 2, 5, 1, 22, 12, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor of each factor in a factorization of n.

Examples

			The a(24) = 10 twice-factorizations are:
(2)*(2)*(2)*(3), (2)*(3)*(2*2), (3)*(2*2*2)
(2)*(2)*(6), (2*2)*(6),
(2)*(3)*(4),
(2)*(12),
(3)*(8),
(4)*(6),
(24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Product[Length[Divisors[GCD@@FactorInteger[d][[All,2]]]],{d,f}],{f,facs[n]}],{n,100}]

Formula

Dirichlet g.f.: 1/Product_{n > 1}(1 - A089723(n)/n^s).

A295924 Number of twice-factorizations of n of type (R,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is the number of ways to choose an integer partition of a divisor of A052409(n).

Examples

			The a(16) = 8 twice-factorizations are (2)*(2)*(2)*(2), (2)*(2)*(2*2), (2)*(2*2*2), (2*2)*(2*2), (2*2*2*2), (4)*(4), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsP],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295924(n) = if(1==n,n,sumdiv(A052409(n),d,numbpart(d))); \\ Antti Karttunen, Jul 29 2018

Formula

a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000041(d). - Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A295923 Number of twice-factorizations of n where the first factorization is constant, i.e., type (P,R,P).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 13, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 29, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 10, 2, 1, 11
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) factorizations of d.

Examples

			The a(16) = 10 twice-factorizations are (2*2*2*2), (2*2*4), (2*8), (4*4), (16), (2*2)*(2*2), (2*2)*(4), (4)*(2*2), (4)*(4), (2)*(2)*(2)*(2).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    a[n_]:=Sum[Length[postfacs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}];
    Array[a,50]

A296132 Number of twice-factorizations of n where the first factorization is constant and the latter factorizations are strict, i.e., type (P,R,Q).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 9, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 10, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) strict factorizations of d.

Examples

			The a(36) = 9 twice-factorizations are (2*3)*(2*3), (2*3)*(6), (6)*(2*3), (6)*(6), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[sfs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

A302601 Numbers that are powers of a prime number whose prime index is also a prime power (not including 1).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 179, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599, 617, 625, 661, 691, 709
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is in the sequence because 49 = prime(4)^2 = prime(prime(1)^2)^2.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
001: {}
003: {{1}}
005: {{2}}
007: {{1,1}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
019: {{1,1,1}}
023: {{2,2}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
049: {{1,1},{1,1}}
053: {{1,1,1,1}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
097: {{3,3}}
103: {{2,2,2}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
127: {{11}}
131: {{1,1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{?(PrimePowerQ[PrimePi[#]]&),}}]&]
  • PARI
    isok(n) = (n==1) || ((isprimepower(n, &p)) && isprimepower(primepi(p))); \\ Michel Marcus, Apr 10 2018

A295920 Number of twice-factorizations of n of type (P,R,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.

Examples

			The a(64) = 17 twice-factorizations are:
(2)*(2)*(2)*(2)*(2)*(2)  (2*2)*(2*2)*(2*2)  (2*2*2)*(2*2*2)  (2*2*2*2*2*2)
(2*2)*(2*2)*(4)          (2*2)*(4)*(2*2)    (4)*(2*2)*(2*2)
(2*2)*(4)*(4)            (4)*(2*2)*(4)      (4)*(4)*(2*2)
(2*2*2)*(8)              (8)*(2*2*2)
(4)*(4)*(4)              (4*4*4)
(8)*(8)                  (8*8)
(64)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code

Formula

a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code

Extensions

More terms from Antti Karttunen, Dec 06 2018

A296134 Number of twice-factorizations of n of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).

Examples

			The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}]
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ Antti Karttunen, Jul 29 2018

Formula

From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)

Extensions

More terms from Antti Karttunen, Jul 29 2018

A301764 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n such that the flattened sequence is also constant.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 5, 6, 7, 8, 5, 10, 7, 8, 10, 10, 6, 12, 7, 12, 13, 10, 5, 14, 12, 11, 11, 14, 7, 18, 9, 12, 13, 11, 12, 20, 10, 10, 13, 18, 9, 20, 9, 14, 20, 12, 5, 20, 15, 19, 14, 17, 7, 18, 16, 20, 17, 12, 5, 26, 13, 12, 21, 18, 17, 24, 9, 15, 13, 22, 9
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(11) = 8 rooted twice-partitions: (9), (333), (111111111), (4)(4), (22)(22), (1111)(1111), (1)(1)(1)(1)(1), ()()()()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,DivisorSum[n-1,If[#===1,1,DivisorSigma[0,#-1]]&]],{n,100}]
  • PARI
    a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==1, 1, numdiv(d-1)))) \\ Andrew Howroyd, Aug 26 2018

A302602 Numbers that are powers of a prime number whose prime index is either 1 or also a prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 17, 25, 27, 31, 32, 41, 59, 64, 67, 81, 83, 109, 121, 125, 127, 128, 157, 179, 191, 211, 241, 243, 256, 277, 283, 289, 331, 353, 367, 401, 431, 461, 509, 512, 547, 563, 587, 599, 617, 625, 709, 729, 739, 773, 797, 859, 877, 919
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			25 is in the sequence because 25 = prime(3)^2 and 3 is a prime number.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
16: {{},{},{},{}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
59: {{7}}
64: {{},{},{},{},{},{}}
67: {{8}}
81: {{1},{1},{1},{1}}
83: {{9}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{?(#===2||PrimeQ[PrimePi[#]]&),}}]&]
  • PARI
    isok(n) = (n==1) || ((isprimepower(n, &p)) && ((p==2) || isprime(primepi(p)))); \\ Michel Marcus, Apr 10 2018
Showing 1-9 of 9 results.