cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A295935 Number of twice-factorizations of n where the latter factorizations are constant, i.e., type (P,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 12, 1, 5, 1, 5, 2, 2, 1, 10, 3, 2, 5, 5, 1, 5, 1, 18, 2, 2, 2, 15, 1, 2, 2, 10, 1, 5, 1, 5, 5, 2, 1, 22, 3, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 13, 1, 2, 5, 40, 2, 5, 1, 5, 2, 5, 1, 28, 1, 2, 5, 5, 2, 5, 1, 22, 12, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor of each factor in a factorization of n.

Examples

			The a(24) = 10 twice-factorizations are:
(2)*(2)*(2)*(3), (2)*(3)*(2*2), (3)*(2*2*2)
(2)*(2)*(6), (2*2)*(6),
(2)*(3)*(4),
(2)*(12),
(3)*(8),
(4)*(6),
(24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Product[Length[Divisors[GCD@@FactorInteger[d][[All,2]]]],{d,f}],{f,facs[n]}],{n,100}]

Formula

Dirichlet g.f.: 1/Product_{n > 1}(1 - A089723(n)/n^s).

A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

By convention a(1) = 1.
Values can be 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 60, 63, 84, 90, etc. - Robert G. Wilson v, Dec 10 2017

Examples

			The a(256) = 10 ways are:
(2^1)^8    (2^2)^4   (2^4)^2  (2^8)^1
(4^1)^4    (4^2)^2   (4^4)^1
(16^1)^2   (16^2)^1
(256^1)^1
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,t;
      m:= igcd(seq(t[2],t=ifactors(n)[2]));
      add(numtheory:-tau(d),d=numtheory:-divisors(m))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 19 2017
  • Mathematica
    Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

Formula

a(A175082(k)) = 1, a(A093771(k)) = 3.
a(n) = Sum_{d|A052409(n)} A000005(d).

A302593 Numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,q;
      uses numtheory;
      F:= map(pi, factorset(n));
      nops(`union`(op(map(factorset,F)))) <= 1
    end proc:
    select(filter, [$1..200]); # Robert Israel, Oct 22 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]

A295923 Number of twice-factorizations of n where the first factorization is constant, i.e., type (P,R,P).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 13, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 29, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 10, 2, 1, 11
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) factorizations of d.

Examples

			The a(16) = 10 twice-factorizations are (2*2*2*2), (2*2*4), (2*8), (4*4), (16), (2*2)*(2*2), (2*2)*(4), (4)*(2*2), (4)*(4), (2)*(2)*(2)*(2).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    a[n_]:=Sum[Length[postfacs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}];
    Array[a,50]

A295920 Number of twice-factorizations of n of type (P,R,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.

Examples

			The a(64) = 17 twice-factorizations are:
(2)*(2)*(2)*(2)*(2)*(2)  (2*2)*(2*2)*(2*2)  (2*2*2)*(2*2*2)  (2*2*2*2*2*2)
(2*2)*(2*2)*(4)          (2*2)*(4)*(2*2)    (4)*(2*2)*(2*2)
(2*2)*(4)*(4)            (4)*(2*2)*(4)      (4)*(4)*(2*2)
(2*2*2)*(8)              (8)*(2*2*2)
(4)*(4)*(4)              (4*4*4)
(8)*(8)                  (8*8)
(64)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code

Formula

a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code

Extensions

More terms from Antti Karttunen, Dec 06 2018

A296134 Number of twice-factorizations of n of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).

Examples

			The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}]
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ Antti Karttunen, Jul 29 2018

Formula

From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)

Extensions

More terms from Antti Karttunen, Jul 29 2018

A302596 Powers of prime numbers of prime index.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 25, 27, 31, 41, 59, 67, 81, 83, 109, 121, 125, 127, 157, 179, 191, 211, 241, 243, 277, 283, 289, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 625, 709, 729, 739, 773, 797, 859, 877, 919, 961, 967, 991, 1031, 1063, 1087, 1153
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
001: {}
003: {{1}}
005: {{2}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
		

Crossrefs

Programs

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{p in A006450} 1/(p-1). - Amiram Eldar, Sep 19 2022

A301760 Number of rooted twice-partitions of n where the composite rooted partition is constant.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 63, 82, 109, 140, 183, 233, 298, 376, 479, 598, 753, 938, 1171, 1449, 1797, 2210, 2726, 3342, 4095, 4990, 6088, 7388, 8968, 10843, 13099, 15770, 18975, 22756, 27276, 32603, 38925, 46353, 55158, 65479, 77656, 91904, 108645
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 7 rooted twice-partitions: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=(1-nn)/(1-x)+Sum[Product[1/(1-x^(d k+1)),{k,0,nn}],{d,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

O.g.f.: 1/(1 - x) + Sum_{n > 0} (-1/(1 - x) + Product_{k >= 0} 1/(1 - x^(n * k + 1))).

A301763 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 5, 8, 13, 14, 5, 32, 7, 20, 64, 26, 6, 92, 7, 126, 199, 22, 5, 352, 252, 41, 581, 394, 7, 1832, 9, 292, 2119, 31, 3216, 4946, 10, 40, 8413, 7708, 9, 20656, 9, 2324, 53546, 24, 5, 70040, 16395, 59361, 131204, 9503, 7, 266780, 178180, 82086
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 8 rooted twice-partitions: (5), (11111), (2)(2), (2)(11), (11)(2), (11)(11), (1)(1)(1), ()()()()()().
The a(15) = 20 rooted twice-partitions:
()()()()()()()()()()()()()(),
(1)(1)(1)(1)(1)(1)(1), (111111)(111111), (1111111111111),
(111111)(222), (222)(111111), (222)(222),
(111111)(33), (222)(33), (33)(111111), (33)(222), (33)(33),
(111111)(6), (222)(6), (33)(6), (6)(111111), (6)(222), (6)(33), (6)(6),
(13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Sum[If[d===n-1,1,DivisorSigma[0,(n-1)/d-1]]^d,{d,Divisors[n-1]}]],{n,50}]
  • PARI
    a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==n-1, 1, numdiv((n-1)/d-1)^d))) \\ Andrew Howroyd, Aug 26 2018

A302594 Numbers whose prime indices other than 1 are equal prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 22, 24, 25, 27, 31, 32, 34, 36, 40, 41, 44, 48, 50, 54, 59, 62, 64, 67, 68, 72, 80, 81, 82, 83, 88, 96, 100, 108, 109, 118, 121, 124, 125, 127, 128, 134, 136, 144, 157, 160, 162, 164, 166, 176, 179, 191, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],MatchQ[Union[DeleteCases[primeMS[#],1]],{_?PrimeQ}|{}]&]
Showing 1-10 of 10 results.