A294791 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly two colors under translational symmetry and swappable colors.
0, 1, 4, 1, 7, 31, 3, 23, 179, 2107, 3, 55, 1095, 26271, 671103, 7, 189, 7327, 350063, 17896831, 954459519, 9, 595, 49939, 4794087, 490853415, 52357746895, 5744387279871, 19, 2101, 349715, 67115111, 13743921631, 2932032057731, 643371380132743, 144115188277194943, 29, 7315, 2485591, 954444607, 390937468407, 166799988703927, 73201365371896619
Offset: 1
Examples
For the 2 X 2 grid and two colors we find T(2,2) = 4: +---+ +---+ +---+ +---+ |X| | |X| | |X|X| |X| | +-+-+ +-+-+ +-+-+ +-+-+ | | | | |X| | | | |X| | +-+-+ +-+-+ +-+-+ +-+-+
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Marko Riedel et al., Burnside lemma and translational symmetries of the torus.
- Marko Riedel, Maple code for sequences A294791, A294792, A294793, A294794.
Crossrefs
Formula
T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=2. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
Comments