A294808 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j^(k*j)*x^j)^j in powers of x.
1, 1, -1, 1, -1, -2, 1, -1, -8, -1, 1, -1, -32, -73, 0, 1, -1, -128, -2155, -927, 4, 1, -1, -512, -58921, -259701, -13969, 4, 1, -1, -2048, -1593811, -67045719, -48496253, -254580, 7, 1, -1, -8192, -43044673, -17178209325, -152513227585, -13001952944, -5288596, 3
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, ... -2, -8, -32, -128, -512, ... -1, -73, -2155, -58921, -1593811, ... 0, -927, -259701, -67045719, -17178209325, ... 4, -13969, -48496253, -152513227585, -476819162106101, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..52, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j)) * A(n-j,k) for n > 0.